Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
183,615 result(s) for "Drones"
Sort by:
Unmanned aerial vehicles for Internet of Things (IoT) : concepts, techniques, and applications
\"The 15 chapters in this book explore the theoretical as well as a number of technical research outcomes on all aspects of UAVs. UAVs has widely differing applications such as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. The advantages of using UAVs are countless and have led the way for the full integration of UAVs, as intelligent objects into the IoT system. The book covers such subjects as: efficient energy management systems in UAV based IoT networks, IoE enabled UAVs, mind-controlled UAV using Brain-Computer Interface (BCI), the importance of AI in realizing autonomous and intelligent flying IoT, blockchain-based solutions for various security issues in UAV-enabled IoT, the challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety\"-- Provided by publisher.
Advances and Challenges in Drone Detection and Classification Techniques: A State-of-the-Art Review
The fast development of unmanned aerial vehicles (UAVs), commonly known as drones, has brought a unique set of opportunities and challenges to both the civilian and military sectors. While drones have proven useful in sectors such as delivery, agriculture, and surveillance, their potential for abuse in illegal airspace invasions, privacy breaches, and security risks has increased the demand for improved detection and classification systems. This state-of-the-art review presents a detailed overview of current improvements in drone detection and classification techniques: highlighting novel strategies used to address the rising concerns about UAV activities. We investigate the threats and challenges faced due to drones’ dynamic behavior, size and speed diversity, battery life, etc. Furthermore, we categorize the key detection modalities, including radar, radio frequency (RF), acoustic, and vision-based approaches, and examine their distinct advantages and limitations. The research also discusses the importance of sensor fusion methods and other detection approaches, including wireless fidelity (Wi-Fi), cellular, and Internet of Things (IoT) networks, for improving the accuracy and efficiency of UAV detection and identification.
Severe extremity amputations in surviving Palestinian civilians caused by explosives fired from drones during the Gaza War
During four separate Israeli military attacks on Gaza (2006, 2009, 2012, and 2014), about 4000 Palestinians were killed and more than 17 000 injured (412 killed and 1264 injured in 2006; 1383 killed and more than 5300 injured in 2009; 130 killed and 1399 injured in 2012; and 2251 killed and 11 231 injured in 2014). An unknown number of people had traumatic amputations of one or more extremities. Use of unmanned Israeli drones for surveillance and armed attacks on Gaza was evident, but exact figures on numbers of drone strikes on Gaza are not available. The aim of this study was to explore the medical consequences of strikes on Gaza with different weapons, including drones. We studied a cohort of civilians in the Gaza Strip who had one of more traumatic limb amputation during the Israeli military attacks between 2006 and 2016. The study was done at The Artificial Limb and Polio Center (ALPC) in the Gaza Strip where most patients are treated and trained after amputation. We used standardised forms and validated instruments to record date and mechanism of injury, self-assessed health, socioeconomic status, anatomical location and length of amputation, comorbidity, and the results of a detailed clinical examination. The studied cohort consisted of 254 Paletinian civilians (234 [92%] men, 20 [8%] women, and 43 [17%] children aged 18 years and younger) with traumatic amputations caused by different weapons. 216 (85%) people had amputations proximal to wrist or ankle, 131 (52%) patients had more than one major amputation or an amputation above the knee, or both, and 136 (54%) people were injured in attacks with Israeli drones, including eight (40%) of the women. The most severe amputations were caused by drone attacks (p=0·0001). Extremity injuries after drone attacks led to immediate amputation more often than with other weapons (p=0·014). Patients injured during cease-fire periods were younger than patients injured during periods of declared Israeli military operations (p=0·0001). Weapons fired on the Gaza Strip from Israeli drones caused severe injuries in surviving Palestinian civilians. Drone-fired missiles resulted in major amputations in almost all victims who had limb losses. Substantially more severe injuries were inflicted by the drone-launched explosives than by other weapons used during the Gaza War. Traumatic amputations caused by drones were often immediately complete. One limitation of our study is that it does not elucidate injury patterns in victims with fatal injuries. None.
Automated low-altitude air delivery : towards autonomous cargo transportation with drones
\"This book investigates Unmanned Aircraft Systems (UAS) with a payload capacity of one metric ton for transportation. The authors provide a large variety of perspectivesfrom economics to technical realization. With the focus on such heavy-lift cargo UAS, the authors consider recently established methods for approval and certification, which they expect to be disruptive for unmanned aviation. In particular, the Specific Operations Risk Assessment (SORA) and its impact on the presented technological solutions and operational concepts are studied. Starting with the assumption of an operation over sparsely populated areas and below common air traffic, diverse measures to further reduce operational risks are proposed. Operational concepts derived from logistics use-cases set the context for an in-depth analysis including aircraft and system design, safe autonomy as well as airspace integration and datalinks. Results from simulations and technology demonstrations are presented as a proof of concept for solutions proposed in this book.\"-- Back cover.
A Literature Review of Drone-Based Package Delivery Logistics Systems and Their Implementation Feasibility
In recent years, e-commerce businesses have seen an increase in the daily volume of packages to be delivered, as well as an increase in the number of particularly demanding customer expectations. In this respect, the delivery mechanism became prohibitively expensive, particularly for the final kilometer. To stay competitive and meet the increased demand, businesses began to look for innovative autonomous delivery options for the last mile, such as autonomous unmanned aerial vehicles/drones, which are a promising alternative for the logistics industry. Following the success of drones in surveillance and remote sensing, drone delivery systems have begun to emerge as a new solution to reduce delivery costs and delivery time. In the coming years, autonomous drone sharing systems will be an unavoidable logistical solution, especially with the new laws/recommendations introduced by the Flight World Organization on how to organize the operations of these special unmanned airline systems. This paper provides a comprehensive literature survey on a set of relevant research issues and highlights the representative solutions and concepts that have been proposed thus far in the design and modeling of the logistics of drone delivery systems, with the purpose of discussing the respective performance levels reached by the various suggested approaches. Furthermore, the paper also investigates the central problems to be addressed and briefly discusses and outlines a series of interesting new research avenues of relevance for drone-based package delivery systems.
Unmanned aircraft systems traffic management : UTM
This book introduces unmanned aircraft systems traffic management (UTM) and how this new paradigm in traffic management integrates unmanned aircraft operations into national airspace systems. Exploring how UTM is expected to operate, including possible architectures for UTM implementations, and UTM services, including flight planning, strategic coordination, and conformance monitoring, Unmanned Aircraft Systems Traffic Management: UTM considers the boundaries of UTM and how it is expected to interlace with tactical coordination systems to maintain airspace safety. The book also presents the work of the global ecosystem of players advancing UTM, including relevant standards development organizations (SDOs), and considers UTM governance paradigms and challenges. FEATURES Describes UTM concept of operations (ConOps) and global variations in architectures Explores envisioned UTM services, including flight planning, strategic coordination, conformance monitoring, contingency management, constraints and geo-awareness, and remote identification Highlights cybersecurity standards development and awareness Covers approaches to the approval, management, and oversight of UTM components and ecosystem Considers the future of UTM and potential barriers to its success, international coordination, and regulatory reform This book is an essential, in-depth, annotated resource for developers, unmanned aircraft system operators, pilots, policy makers, researchers, and academics engaged in unmanned systems, transportation management, and the future of aviation.
Small Unmanned Aircraft
Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.