Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
7,728
result(s) for
"Drosophila melanogaster - physiology"
Sort by:
First in fly : Drosophila research and biological discovery
A single species of fly, Drosophila melanogaster, has been the subject of scientific research for more than one hundred years. Why does this tiny insect merit such intense scrutiny? Drosophila's importance as a research organism began with its short life cycle, ability to reproduce in large numbers, and easy-to-see mutant phenotypes. Over time, laboratory investigation revealed surprising similarities between flies and other animals at the level of genes, gene networks, cell interactions, physiology, immunity, and behavior. Like humans, flies learn and remember, fight microbial infection, and slow down as they age. Scientists use Drosophila to investigate complex biological activities in a simple but intact living system. Fly research provides answers to some of the most challenging questions in biology and biomedicine, including how cells transmit signals and form ordered structures, how we can interpret the wealth of human genome data now available, and how we can develop effective treatments for cancer, diabetes, and neurodegenerative diseases. Written by a leader in the Drosophila research community, First in Fly celebrates key insights uncovered by investigators using this model organism. Stephanie Elizabeth Mohr draws on these \"first in fly\" findings to introduce fundamental biological concepts gained over the last century and explore how research in the common fruit fly has expanded our understanding of human health and disease.-- Provided by publisher
Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster
2018
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Journal Article
Circadian Rhythms and Sleep in Drosophila melanogaster
2017
The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful for identifying a large set of genes, molecules, and neuroanatomic loci important for regulating sleep amount. Conserved aspects of sleep regulation in flies and mammals include wake-promoting roles for catecholamine neurotransmitters and involvement of hypothalamus-like regions, although other neuroanatomic regions implicated in sleep in flies have less clear parallels. Sleep is also subject to regulation by factors such as food availability, stress, and social environment. We are beginning to understand how the identified molecules and neurons interact with each other, and with the environment, to regulate sleep. Drosophila researchers can also take advantage of increasing mechanistic understanding of other behaviors, such as learning and memory, courtship, and aggression, to understand how sleep loss impacts these behaviors. Flies thus remain a valuable tool for both discovery of novel molecules and deep mechanistic understanding of sleep and circadian rhythms.
Journal Article
A gut microbial factor modulates locomotor behaviour in Drosophila
by
Argade, Sulabha
,
Mazmanian, Sarkis K.
,
Marka, Szabolcs
in
631/326/2565/2134
,
631/378/2632
,
631/378/3920
2018
While research into the biology of animal behaviour has primarily focused on the central nervous system, cues from peripheral tissues and the environment have been implicated in brain development and function
1
. There is emerging evidence that bidirectional communication between the gut and the brain affects behaviours including anxiety, cognition, nociception and social interaction
1
–
9
. Coordinated locomotor behaviour is critical for the survival and propagation of animals, and is regulated by internal and external sensory inputs
10
,
11
. However, little is known about how the gut microbiome influences host locomotion, or the molecular and cellular mechanisms involved. Here we report that germ-free status or antibiotic treatment results in hyperactive locomotor behaviour in the fruit fly
Drosophila melanogaster
. Increased walking speed and daily activity in the absence of a gut microbiome are rescued by mono-colonization with specific bacteria, including the fly commensal
Lactobacillus brevis
. The bacterial enzyme xylose isomerase from
L. brevis
recapitulates the locomotor effects of microbial colonization by modulating sugar metabolism in flies. Notably, thermogenetic activation of octopaminergic neurons or exogenous administration of octopamine, the invertebrate counterpart of noradrenaline, abrogates the effects of xylose isomerase on
Drosophila
locomotion. These findings reveal a previously unappreciated role for the gut microbiome in modulating locomotion, and identify octopaminergic neurons as mediators of peripheral microbial cues that regulate motor behaviour in animals.
Female
Drosophila
that lack a microbiota are hyperactive, and xylose isomerase from
Lactobacillus brevis
is sufficient to reverse this effect.
Journal Article
Independent optical excitation of distinct neural populations
by
Carpenter, Eric J
,
Cho, Yong Ku
,
Boyden, Edward S
in
631/1647/2253
,
Algae
,
Anatomy & physiology
2014
Sequencing the transcriptomes of more than 100 species of alga yields new channelrhodopsins with promising properties for optogenetics. A far red–shifted channelrhodopsin, Chrimson, opens up new behavioral capabilities in
Drosophila
, and alongside a fast yet light-sensitive blue channelrhodopsin, Chronos, enables independent excitation of two neuronal populations in brain slices.
Optogenetic tools enable examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the study of how different synapses or pathways interact to encode information in the brain. Here we describe two channelrhodopsins, Chronos and Chrimson, discovered through sequencing and physiological characterization of opsins from over 100 species of alga. Chrimson's excitation spectrum is red shifted by 45 nm relative to previous channelrhodopsins and can enable experiments in which red light is preferred. We show minimal visual system–mediated behavioral interference when using Chrimson in neurobehavioral studies in
Drosophila melanogaster
. Chronos has faster kinetics than previous channelrhodopsins yet is effectively more light sensitive. Together these two reagents enable two-color activation of neural spiking and downstream synaptic transmission in independent neural populations without detectable cross-talk in mouse brain slice.
Journal Article
The complete connectome of a learning and memory centre in an insect brain
2017
Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the
Drosophila
larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections found between output neurons could enhance the selection of learned behaviours. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory centre.
The complete, synapse-resolution connectome of the
Drosophila
larval mushroom body.
Wiring diagram of an associative memory system
In order to guide action based on past experience, animals have evolved high-order parallel-fibre systems, such as the cerebellum in mammals and the mushroom body in the brains of certain insects. These circuits are specialized in forming large numbers of associative memories, but their full understanding has been impaired by incomplete neuro-anatomical data. Albert Cardona and colleagues provide, for the first time, a full wiring diagram at synapse resolution of such an associative system: the
Drosophila
larval mushroom body. The work reveals multiple novel and surprising neuronal circuits, such as both random and stereotyped inputs from projection neurons to Kenyon cells. These findings will instruct future experiments and modelling in neuroscience, psychology and robotics.
Journal Article
Neuronal wiring diagram of an adult brain
2024
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative
1
–
6
, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 10
7
chemical synapses
7
between 139,255 neurons reconstructed from an adult female
Drosophila melanogaster
8
,
9
. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities
10
–
12
. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome—a map of projections between regions—from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
FlyWire presents a neuronal wiring diagram of the whole fly brain with annotations for cell types, classes, nerves, hemilineages and predicted neurotransmitters, with data products and an open ecosystem to facilitate exploration and browsing.
Journal Article
Circadian autophagy drives iTRF-mediated longevity
2021
Time-restricted feeding (TRF) has recently gained interest as a potential anti-ageing treatment for organisms from
Drosophila
to humans
1
–
5
. TRF restricts food intake to specific hours of the day. Because TRF controls the timing of feeding, rather than nutrient or caloric content, TRF has been hypothesized to depend on circadian-regulated functions; the underlying molecular mechanisms of its effects remain unclear. Here, to exploit the genetic tools and well-characterized ageing markers of
Drosophila
, we developed an intermittent TRF (iTRF) dietary regimen that robustly extended fly lifespan and delayed the onset of ageing markers in the muscles and gut. We found that iTRF enhanced circadian-regulated transcription and that iTRF-mediated lifespan extension required both circadian regulation and autophagy, a conserved longevity pathway. Night-specific induction of autophagy was both necessary and sufficient to extend lifespan on an ad libitum diet and also prevented further iTRF-mediated lifespan extension. By contrast, day-specific induction of autophagy did not extend lifespan. Thus, these results identify circadian-regulated autophagy as a critical contributor to iTRF-mediated health benefits in
Drosophila
. Because both circadian regulation and autophagy are highly conserved processes in human ageing, this work highlights the possibility that behavioural or pharmaceutical interventions that stimulate circadian-regulated autophagy might provide people with similar health benefits, such as delayed ageing and lifespan extension.
Circadian-regulated autophagy contributes to the health benefits of intermittent time-restricted feeding in
Drosophila
.
Journal Article
Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility
by
Bordenstein, Sarah R.
,
Perlmutter, Jessamyn I.
,
Metcalf, Jason A.
in
631/181/2474
,
631/181/735
,
631/208/325/1506
2017
The discovery of two genes encoded by prophage WO from
Wolbachia
that functionally recapitulate and enhance cytoplasmic incompatibility in arthropods is the first inroad in solving the genetic basis of reproductive parasitism.
Manipulation of insect survival by
Wolbachia
bacteria
Bacteria from the genus
Wolbachia
infect many arthropods, including the mosquitoes that are vectors for many viruses that infect humans.
Wolbachia
infection causes 'cytoplasmic incompatibility', which means that crosses between infected males and uninfected females lead to embryonic death, increasing the proportion of infected females in the population. The molecular basis for this effect has been unknown. Here, Seth Bordenstein and colleagues use comparative and transgenic approaches to identify two genes encoded by the prophage WO from
Wolbachia
that recapitulate cytoplasmic incompatibility. The discovery of these cytoplasmic incompatibility factors could lead to the genetic manipulation of WO-induced reproductive alterations, and may feed into efforts to control the transmission of arthropod-borne viruses to humans.
The genus
Wolbachia
is an archetype of maternally inherited intracellular bacteria that infect the germline of numerous invertebrate species worldwide. They can selfishly alter arthropod sex ratios and reproductive strategies to increase the proportion of the infected matriline in the population. The most common reproductive manipulation is cytoplasmic incompatibility, which results in embryonic lethality in crosses between infected males and uninfected females. Females infected with the same
Wolbachia
strain rescue this lethality. Despite more than 40 years of research
1
and relevance to symbiont-induced speciation
2
,
3
, as well as control of arbovirus vectors
4
,
5
,
6
and agricultural pests
7
, the bacterial genes underlying cytoplasmic incompatibility remain unknown. Here we use comparative and transgenic approaches to demonstrate that two differentially transcribed, co-diverging genes in the eukaryotic association module of prophage WO
8
from
Wolbachia
strain
w
Mel recapitulate and enhance cytoplasmic incompatibility. Dual expression in transgenic, uninfected males of
Drosophila melanogaster
crossed to uninfected females causes embryonic lethality. Each gene additively augments embryonic lethality in crosses between infected males and uninfected females. Lethality associates with embryonic defects that parallel those of wild-type cytoplasmic incompatibility and is notably rescued by
w
Mel-infected embryos in all cases. The discovery of cytoplasmic incompatibility factor genes
cifA
and
cifB
pioneers genetic studies of prophage WO-induced reproductive manipulations and informs the continuing use of
Wolbachia
to control dengue and Zika virus transmission to humans.
Journal Article
Whole-brain annotation and multi-connectome cell typing of Drosophila
2024
The fruit fly
Drosophila melanogaster
has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome
1
with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome
2
, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
A consensus cell type atlas for the fly brain provides both an intellectual framework and open-source toolchains for brain-scale comparative connectomics.
Journal Article