Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
190 result(s) for "Drug combination prediction"
Sort by:
SAFER: sub-hypergraph attention-based neural network for predicting effective responses to dose combinations
Background The potential benefits of drug combination synergy in cancer medicine are significant, yet the risks must be carefully managed due to the possibility of increased toxicity. Although artificial intelligence applications have demonstrated notable success in predicting drug combination synergy, several key challenges persist: (1) Existing models often predict average synergy values across a restricted range of testing dosages, neglecting crucial dose amounts and the mechanisms of action of the drugs involved. (2) Many graph-based models rely on static protein–protein interactions, failing to adapt to dynamic and higher-order relationships. These limitations constrain the applicability of current methods. Results We introduce SAFER, a Sub-hypergraph Attention-based graph model, addressing these issues by incorporating complex relationships among biological knowledge networks and considering dosing effects on subject-specific networks. SAFER outperformed previous models on the benchmark and the independent test set. The analysis of subgraph attention weight for the lung cancer cell line highlighted JAK-STAT signaling pathway, PRDM12, ZNF781, and CDC5L that have been implicated in lung fibrosis. Conclusions SAFER presents an interpretable framework designed to identify drug-responsive signals. Tailored for comprehending dose effects on subject-specific molecular contexts, our model uniquely captures dose-level drug combination responses. This capability unlocks previously inaccessible avenues of investigation compared to earlier models. Furthermore, the SAFER framework can be leveraged by future inquiries to investigate molecular networks that uniquely characterize individual patients and can be applied to prioritize personalized effective treatment based on safe dose combinations.
An integrated computational strategy to predict personalized cancer drug combinations by reversing drug resistance signatures
Drug resistance currently poses the greatest barrier to cancer treatments. To overcome drug resistance, drug combination therapy has been proposed as a promising treatment strategy. Herein, we present Re-Sensitizing Drug Prediction (RSDP), a novel computational strategy, for predicting the personalized cancer drug combination A + B by reversing the resistance signature of drug A. The process integrates multiple biological features using a robust rank aggregation algorithm, including Connectivity Map, synthetic lethality, synthetic rescue, pathway, and drug target. Bioinformatics assessments revealed that RSDP achieved a relatively accurate prediction performance for identifying personalized combinational re-sensitizing drug B against cell line–specific intrinsic resistance, cell line–specific acquired resistance, and patient-specific intrinsic resistance to drug A. In addition, we developed the largest resource of cell line–specific cancer drug resistance signatures, including intrinsic and acquired resistance, as a byproduct of the proposed strategy. The findings indicate that personalized drug resistance signature reversal is a promising strategy for identifying personalized drug combinations, which may guide future clinical decisions regarding personalized medicine. •A novel computational strategy Re-Sensitizing Drug Prediction (RSDP) was proposed.•RSDP predicts personalized drug A + Bs by drug A resistance signature reversal.•RSDP can effectively predict cell line-specific drug combinations A + B.•RSDP can achieve a relatively reliable prediction for patient-specific drug A + Bs.•The largest cell line-specific Cancer Drug Resistance Signature Resource was built.
Antimalarial Drug Combination Predictions Using the Machine Learning Synergy Predictor (MLSyPred©) tool
Purpose Antimalarial drug resistance is a global public health problem that leads to treatment failure. Synergistic drug combinations can improve treatment outcomes and delay the development of drug resistance. Here, we describe the implementation of a freely available computational tool, Machine Learning Synergy Predictor (MLSyPred©), to predict potential synergy in antimalarial drug combinations. Methods The MLSyPred© synergy prediction method extracts molecular fingerprints from the drugs’ biochemical structures to use as features and also cleans and prepares the raw data. Five machine learning algorithms (Logistic Regression, Random Forest, Support vector machine, Ada Boost, and Gradient Boost) were implemented to build prediction models. Implementation and application of the MLSyPred© tool were tested using datasets from 1540 combinations of 79 drugs and compounds biologically evaluated in pairs for three strains of Plasmodium falciparum (3D7, HB3, and Dd2). Results The best prediction models were obtained using Logistic Regression for antimalarials with the strains Dd2 and HB3 (0.81 and 0.70 AUC, respectively) and Random Forest for antimalarials with 3D7 (0.69 AUC). The MLSyPred© tool yielded 45% precision for synergistically predicted antimalarial drug combinations that were annotated and biologically validated, thus confirming the functionality and applicability of the tool. Conclusion  The MLSyPred© tool is freely available and represents a promising strategy for discovering potential synergistic drug combinations for further development as novel antimalarial therapies.
Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy
In the prediction of the synergy of drug combinations, systems pharmacology models expand the scope of experiment screening and overcome the limitations of current computational models posed by their lack of mechanical interpretation and integration of gene essentiality. We therefore investigated the synergy of drug combinations for cancer therapies utilizing records in NCI ALMANAC, and we employed logistic regression to test the statistical significance of gene and pathway features in that interaction. We trained our predictive models using 43 NCI-60 cell lines, 165 KEGG pathways, and 114 drug pairs. Scores of drug-combination synergies showed a stronger correlation with pathway than gene features in overall trend analysis and a significant association with both genes and pathways in genome-wide association analyses. However, we observed little overlap of significant gene expressions and essentialities and no significant evidence that associated target and non-target genes and their pathways. We were able to validate four drug-combination pathways between two drug combinations, Nelarabine-Exemestane and Docetaxel-Vermurafenib, and two signaling pathways, PI3K-AKT and AMPK, in 16 cell lines. In conclusion, pathways significantly outperformed genes in predicting drug-combination synergy, and because they have very different mechanisms, gene expression and essentiality should be considered in combination rather than individually to improve this prediction.
INDI: a computational framework for inferring drug interactions and their associated recommendations
Inferring drug–drug interactions (DDIs) is an essential step in drug development and drug administration. Most computational inference methods focus on modeling drug pharmacokinetics, aiming at interactions that result from a common metabolizing enzyme (CYP). Here, we introduce a novel prediction method, INDI (INferring Drug Interactions), allowing the inference of both pharmacokinetic, CYP‐related DDIs (along with their associated CYPs) and pharmacodynamic, non‐CYP associated ones. On cross validation, it obtains high specificity and sensitivity levels (AUC (area under the receiver‐operating characteristic curve)⩾0.93). In application to the FDA adverse event reporting system, 53% of the drug events could potentially be connected to known (41%) or predicted (12%) DDIs. Additionally, INDI predicts the severity level of each DDI upon co‐administration of the involved drugs, suggesting that severe interactions are abundant in the clinical practice. Examining regularly taken medications by hospitalized patients, 18% of the patients receive known or predicted severely interacting drugs and are hospitalized more frequently. Access to INDI and its predictions is provided via a web tool at http://www.cs.tau.ac.il/∼bnet/software/INDI , facilitating the inference and exploration of drug interactions and providing important leads for physicians and pharmaceutical companies alike. INDI is a similarity‐based drug–drug interaction prediction method that can infer both pharmacokinetic and pharmacodynamic interactions, as well as their severity levels. Both known and predicted drug interactions are found to be prevalent in clinical practice. Synopsis INDI is a similarity‐based drug–drug interaction prediction method that can infer both pharmacokinetic and pharmacodynamic interactions, as well as their severity levels. Both known and predicted drug interactions are found to be prevalent in clinical practice. INDI is a similarity‐based drug–drug interaction prediction method, capable of handling both pharmacokinetic and pharmacodynamic interactions. INDI predicts the severity of the interaction and the Cytochrome P450 isozyme involved in pharmacokinetic interactions. We show the prevalence of known and predicted drug interactions in drug adverse reports and in chronic medications taken by hospitalized patients.
DPDDI: a deep predictor for drug-drug interactions
Background The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases. Results In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs. Conclusion We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
A review on graph neural networks for predicting synergistic drug combinations
Combinational therapies with synergistic effects provide a powerful treatment strategy for tackling complex diseases, particularly malignancies. Discovering these synergistic combinations, often involving various compounds and structures, necessitates exploring a vast array of compound pairings. However, practical constraints such as cost, feasibility, and complexity hinder exhaustive in vivo and in vitro experimentation. In recent years, machine learning methods have made significant inroads in pharmacology. Among these, Graph Neural Networks (GNNs) have gained increasing attention in drug discovery due to their ability to represent complex molecular structures as networks, capture vital structural information, and seamlessly handle diverse data types. This review aims to provide a comprehensive overview of various GNN models developed for predicting effective drug combinations, examining the limitations and strengths of different models, and comparing their predictive performance. Additionally, we discuss the datasets used for drug synergism prediction and the extraction of drug-related information as predictive features. By summarizing the state-of-the-art GNN-driven drug combination prediction, this review aims to offer valuable insights into the promising field of computational pharmacotherapy.
Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study
Background The selection pressure exercised by antibiotic drugs is an important consideration for the wise stewardship of antimicrobial treatment programs. Treatment decisions are currently based on crude assumptions, and there is an urgent need to develop a more quantitative knowledge base that can enable predictions of the impact of individual antibiotics on the human gut microbiome and resistome. Results Using shotgun metagenomics, we quantified changes in the gut microbiome in two cohorts of hematological patients receiving prophylactic antibiotics; one cohort was treated with ciprofloxacin in a hospital in Tübingen and the other with cotrimoxazole in a hospital in Cologne. Analyzing this rich longitudinal dataset, we found that gut microbiome diversity was reduced in both treatment cohorts to a similar extent, while effects on the gut resistome differed. We observed a sharp increase in the relative abundance of sulfonamide antibiotic resistance genes (ARGs) by 148.1% per cumulative defined daily dose of cotrimoxazole in the Cologne cohort, but not in the Tübingen cohort treated with ciprofloxacin. Through multivariate modeling, we found that factors such as individual baseline microbiome, resistome, and plasmid diversity; liver/kidney function; and concurrent medication, especially virostatic agents, influence resistome alterations. Strikingly, we observed different effects on the plasmidome in the two treatment groups. There was a substantial increase in the abundance of ARG-carrying plasmids in the cohort treated with cotrimoxazole, but not in the cohort treated with ciprofloxacin, indicating that cotrimoxazole might contribute more efficiently to the spread of resistance. Conclusions Our study represents a step forward in developing the capability to predict the effect of individual antimicrobials on the human microbiome and resistome. Our results indicate that to achieve this, integration of the individual baseline microbiome, resistome, and mobilome status as well as additional individual patient factors will be required. Such personalized predictions may in the future increase patient safety and reduce the spread of resistance. Trial registration ClinicalTrials.gov, NCT02058888 . Registered February 10 2014
Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes
Drug–drug interaction (DDI) often causes serious adverse reactions and thus results in inestimable economic and social loss. Currently, comprehensive DDI evaluation has become a major challenge in pharmaceutical research due to the time-consuming and costly process of the experimental assessment and it is of high necessity to develop effective in silico methods to predict and evaluate DDIs accurately and efficiently. In this study, based on a large number of substrates and inhibitors related to five important CYP450 isozymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), a series of high-performance predictive models for metabolic DDIs were constructed by two machine learning methods (random forest and XGBoost) and 4 different types of descriptors (MOE_2D, CATS, ECFP4 and MACCS). To reduce the uncertainty of individual models, the consensus method was applied to yield more reliable predictions. A series of evaluations illustrated that the consensus models were more reliable and robust for the DDI predictions of new drug combination. For the internal validation, the whole prediction accuracy and AUC value of the DDI models were around 0.8 and 0.9, respectively. When it was applied to the external datasets, the model accuracy was 0.793 and 0.795 for multi-level validation and external validation, respectively. Furthermore, we also compared our model with some recently published tools and then applied the final model to predict FDA-approved drugs and proposed 54,013 possible drug pairs with potential DDIs. In summary, we developed a powerful DDI predictive model from the perspective of the CYP450 enzyme family and it will help a lot in the future drug development and clinical pharmacy research. Graphical Abstract
MFSynDCP: multi-source feature collaborative interactive learning for drug combination synergy prediction
Drug combination therapy is generally more effective than monotherapy in the field of cancer treatment. However, screening for effective synergistic combinations from a wide range of drug combinations is particularly important given the increase in the number of available drug classes and potential drug-drug interactions. Existing methods for predicting the synergistic effects of drug combinations primarily focus on extracting structural features of drug molecules and cell lines, but neglect the interaction mechanisms between cell lines and drug combinations. Consequently, there is a deficiency in comprehensive understanding of the synergistic effects of drug combinations. To address this issue, we propose a drug combination synergy prediction model based on multi-source feature interaction learning, named MFSynDCP, aiming to predict the synergistic effects of anti-tumor drug combinations. This model includes a graph aggregation module with an adaptive attention mechanism for learning drug interactions and a multi-source feature interaction learning controller for managing information transfer between different data sources, accommodating both drug and cell line features. Comparative studies with benchmark datasets demonstrate MFSynDCP's superiority over existing methods. Additionally, its adaptive attention mechanism graph aggregation module identifies drug chemical substructures crucial to the synergy mechanism. Overall, MFSynDCP is a robust tool for predicting synergistic drug combinations. The source code is available from GitHub at https://github.com/kkioplkg/MFSynDCP .