Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
334,158
result(s) for
"Drug resistance"
Sort by:
Mechanisms of Multidrug Resistance in Cancer Chemotherapy
by
Kontek, Renata
,
Bukowski, Karol
,
Kciuk, Mateusz
in
Animals
,
Antineoplastic Agents - classification
,
Antineoplastic Agents - pharmacology
2020
Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Depending on the mechanism of action, commonly used chemotherapeutic agents can be divided into several classes (antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase inhibitors, and others). Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR. The aim of this review is not only to demonstrate the latest data on the mechanisms of cellular resistance to anticancer agents currently used in clinical treatment but also to present the mechanisms of action of novel potential antitumor drugs which have been designed to overcome these resistance mechanisms. Better understanding of the mechanisms of MDR and targets of novel chemotherapy agents should provide guidance for future research concerning new effective strategies in cancer treatment.
Journal Article
The path of most resistance
Set against the backdrop of an antibiotic apocalypse in near future London. Rosa Scott, a brilliant and obsessive surgeon becomes Surgeon X, a vigilante doctor who uses experimental surgery and black market drugs to treat patients. But as Surgeon X, Rosa soon develops a godlike-complex, deciding who will live and who will die. Ultimately, she believes that to survive in this compromised world her own warped moral code is the one she must follow--even if it endangers those closest to her.
Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence
by
Christaki, Eirini
,
Tofarides, Andreas
,
Marcou, Markella
in
Antibiotics
,
Antiinfectives and antibacterials
,
Antimicrobial agents
2020
In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets.
Journal Article
Species-specific activity of antibacterial drug combinations
2018
The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine
1
,
2
. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens—
Escherichia coli
,
Salmonella enterica
serovar Typhimurium and
Pseudomonas aeruginosa
—to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug–drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth
Galleria mellonella
, with one reverting resistance to the last-resort antibiotic colistin.
Screening pairwise combinations of antibiotics and other drugs against three bacterial pathogens reveals that antagonistic and synergistic drug–drug interactions are specific to microbial species and strains.
Journal Article
Superbugs : the race to stop an epidemic
2019
A New York Times bestselling author shares this exhilarating story of cutting-edge science and the race against the clock to find new treatments in the fight against the antibiotic-resistant bacteria known as superbugs. Physician, researcher, and ethics professor Matt McCarthy is on the front lines of a groundbreaking clinical trial testing a new antibiotic to fight lethal superbugs, bacteria that have built up resistance to the life-saving drugs in our rapidly dwindling arsenal. This trial serves as the backdrop for the compulsively readable Superbugs, and the results will impact nothing less than the future of humanity. Dr. McCarthy explores the history of bacteria and antibiotics, from Alexander Fleming's discovery of penicillin, to obscure sources of innovative new medicines (often found in soil samples), to the cutting-edge DNA manipulation known as CRISPR, bringing to light how we arrived at this juncture of both incredible breakthrough and extreme vulnerability. We also meet the patients whose lives are hanging in the balance, from Remy, a teenager with a dangerous and rare infection, to Donny, a retired New York City firefighter with a compromised immune system, and many more. The proverbial ticking clock will keep readers on the edge of their seats. Can Dr. McCarthy save the lives of his patients infected with the deadly bacteria, who have otherwise lost all hope?
Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies
by
Iacopetta, Domenico
,
Giuzio, Federica
,
Saturnino, Carmela
in
ABC transporters
,
Adenosine triphosphate
,
Animals
2022
Multidrug resistance is a leading concern in public health. It describes a complex phenotype whose predominant feature is resistance to a wide range of structurally unrelated cytotoxic compounds, many of which are anticancer agents. Multidrug resistance may be also related to antimicrobial drugs, and is known to be one of the most serious global public health threats of this century. Indeed, this phenomenon has increased both mortality and morbidity as a consequence of treatment failures and its incidence in healthcare costs. The large amounts of antibiotics used in human therapies, as well as for farm animals and even for fishes in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. It is not negligible that the ongoing COVID-19 pandemic may further contribute to antimicrobial resistance. In this paper, multidrug resistance and antimicrobial resistance are underlined, focusing on the therapeutic options to overcome these obstacles in drug treatments. Lastly, some recent studies on nanodrug delivery systems have been reviewed since they may represent a significant approach for overcoming resistance.
Journal Article
Superbugs : an arms race against bacteria
Antibiotics are powerful drugs that can prevent and treat infections, but they are becoming less effective as a result of drug resistance. Superbugs describes this growing global threat, the systematic failures that have led to it, and solutions that governments, industries, and public health specialists can adopt.-- Provided by publisher
The role of vaccines in combatting antimicrobial resistance
2021
The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.In this Review, Rappuoli and colleagues discuss evidence that vaccines can have a major role in fighting antimicrobial resistance, they describe the current state of development of vaccines against antimicrobial-resistant bacterial pathogens and discuss possible opportunities to overcome obstacles that hinder progress in vaccine development.
Journal Article