Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Drug target prioritization"
Sort by:
Machine learning prediction of oncology drug targets based on protein and network properties
Background The selection and prioritization of drug targets is a central problem in drug discovery. Computational approaches can leverage the growing number of large-scale human genomics and proteomics data to make in-silico target identification, reducing the cost and the time needed. Results We developed a machine learning approach to score proteins to generate a druggability score of novel targets. In our model we incorporated 70 protein features which included properties derived from the sequence, features characterizing protein functions as well as network properties derived from the protein-protein interaction network. The advantage of this approach is that it is unbiased and even less studied proteins with limited information about their function can score well as most of the features are independent of the accumulated literature. We build models on a training set which consist of targets with approved drugs and a negative set of non-drug targets. The machine learning techniques help to identify the most important combination of features differentiating validated targets from non-targets. We validated our predictions on an independent set of clinical trial drug targets, achieving a high accuracy characterized by an Area Under the Curve (AUC) of 0.89. Our most predictive features included biological function of proteins, network centrality measures, protein essentiality, tissue specificity, localization and solvent accessibility. Our predictions, based on a small set of 102 validated oncology targets, recovered the majority of known drug targets and identifies a novel set of proteins as drug target candidates. Conclusions We developed a machine learning approach to prioritize proteins according to their similarity to approved drug targets. We have shown that the method proposed is highly predictive on a validation dataset consisting of 277 targets of clinical trial drug confirming that our computational approach is an efficient and cost-effective tool for drug target discovery and prioritization. Our predictions were based on oncology targets and cancer relevant biological functions, resulting in significantly higher scores for targets of oncology clinical trial drugs compared to the scores of targets of trial drugs for other indications. Our approach can be used to make indication specific drug-target prediction by combining generic druggability features with indication specific biological functions.
Genetic assessment of efficacy and safety profiles of coagulation cascade proteins identifies Factors II and XI as actionable anticoagulant targets
Abstract Aims Anticoagulants are routinely used by millions of patients worldwide to prevent blood clots. Yet, problems with anticoagulant therapy remain, including a persistent and cumulative bleeding risk in patients undergoing prolonged anticoagulation. New safer anticoagulant targets are needed. Methods and results To prioritize anticoagulant targets with the strongest efficacy [venous thromboembolism (VTE) prevention] and safety (low bleeding risk) profiles, we performed two-sample Mendelian randomization and genetic colocalization. We leveraged three large-scale plasma protein data sets (deCODE as discovery data set and Fenland and Atherosclerosis Risk in Communities as replication data sets] and one liver gene expression data set (Institut Universitaire de Cardiologie et de Pneumologie de Québec bariatric biobank) to evaluate evidence for a causal effect of 26 coagulation cascade proteins on VTE from a new genome-wide association meta-analysis of 44 232 VTE cases and 847 152 controls, stroke subtypes, bleeding outcomes, and parental lifespan as an overall measure of efficacy/safety ratio. A 1 SD genetically predicted reduction in F2 blood levels was associated with lower risk of VTE [odds ratio (OR) = 0.44, 95% confidence interval (CI) = 0.38–0.51, P = 2.6e−28] and cardioembolic stroke risk (OR = 0.55, 95% CI = 0.39–0.76, P = 4.2e−04) but not with bleeding (OR = 1.13, 95% CI = 0.93–1.36, P = 2.2e−01). Genetically predicted F11 reduction was associated with lower risk of VTE (OR = 0.61, 95% CI = 0.58–0.64, P = 4.1e−85) and cardioembolic stroke (OR = 0.77, 95% CI = 0.69–0.86, P = 4.1e−06) but not with bleeding (OR = 1.01, 95% CI = 0.95–1.08, P = 7.5e−01). These Mendelian randomization associations were concordant across the three blood protein data sets and the hepatic gene expression data set as well as colocalization analyses. Conclusion These results provide strong genetic evidence that F2 and F11 may represent safe and efficacious therapeutic targets to prevent VTE and cardioembolic strokes without substantially increasing bleeding risk. Graphical Abstract Graphical Abstract
From Genome to Drugs: New Approaches in Antimicrobial Discovery
Decades of successful use of antibiotics is currently challenged by the emergence of increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario where private investment in the development of new antimicrobials is declining, efforts to combat drug-resistant infections become a worldwide public health problem. Reasons behind unsuccessful new antimicrobial development projects range from inadequate selection of the molecular targets to a lack of innovation. In this context, increasingly available omics data for multiple pathogens has created new drug discovery and development opportunities to fight infectious diseases. Identification of an appropriate molecular target is currently accepted as a critical step of the drug discovery process. Here, we review how diverse layers of multi-omics data in conjunction with structural/functional analysis and systems biology can be used to prioritize the best candidate proteins. Once the target is selected, virtual screening can be used as a robust methodology to explore molecular scaffolds that could act as inhibitors, guiding the development of new drug lead compounds. This review focuses on how the advent of omics and the development and application of bioinformatics strategies conduct a “big-data era” that improves target selection and lead compound identification in a cost-effective and shortened timeline.
Genomic Evidence Supports the Recognition of Endometriosis as an Inflammatory Systemic Disease and Reveals Disease-Specific Therapeutic Potentials of Targeting Neutrophil Degranulation
Endometriosis, classically viewed as a localized disease, is increasingly recognized as a systemic disease with multi-organ effects. This disease is highlighted by systemic inflammation in affected organs and by high comorbidity with immune-mediated diseases. We provide genomic evidence to support the recognition of endometriosis as an inflammatory systemic disease. This was achieved through our genomics-led target prioritization, called ' , that leverages the value of multi-layered genomic datasets (including genome-wide associations in disease, regulatory genomics, and protein interactome). Our prioritization recovered existing proof-of-concept therapeutic targeting in endometriosis and outperformed competing prioritization approaches (Open Targets and Naïve prioritization). Target genes at the leading prioritization revealed molecular hallmarks (and possibly the cellular basis as well) that are consistent with systemic disease manifestations. Pathway crosstalk-based attack analysis identified the critical gene . In the context of this gene, we further identified genes that are already targeted by licensed medications in other diseases, such as . Such analysis was supported by current interests targeting the PI3K/AKT/mTOR pathway in endometriosis and by the fact that therapeutic agents targeting are now under active clinical trials in disease. The construction of cross-disease prioritization map enabled the identification of shared and distinct targets between endometriosis and immune-mediated diseases. Shared target genes identified opportunities for repurposing existing immunomodulators, particularly disease-modifying anti-rheumatic drugs (such as , and blockades, and inhibitors). Genes highly prioritized only in endometriosis revealed disease-specific therapeutic potentials of targeting neutrophil degranulation - the exocytosis that can facilitate metastasis-like spread to distant organs causing inflammatory-like microenvironments. Improved target prioritization, along with an atlas of predicted targets and repurposed drugs (available at https://23verse.github.io/end), provides genomic insights into endometriosis, reveals disease-specific therapeutic potentials, and expands the existing theories on the origin of disease.
Post-genomic Approaches in Drug and Vaccine Development
Over the past decade genome sequencing projects and the associated efforts have facilitated the discovery of several novel disease targets and the approval of several innovative drugs. To further exploit this data for human health and disease, there is a need to understand the genome data itself in detail, discover novel targets, understand their role in physiological pathways and associated diseases, with the aim to translate these discoveries to clinical and preventive medicine. It is equally important to understand the labors and limitations in integrating clinical phenotypes with genomic, transcriptomic, proteomic and metabolomic approaches. This book focuses on some key advances in the field. Technical topics discussed in the book include: • Drug discovery • Target identification and prioritization • Hypothesis driven multi-target drug design • Genomics in vaccine development • Gene regulatory networks • Vaccine design and development • Prediction of drug side effects in silico
Pathway2Targets: an open-source pathway-based approach to repurpose therapeutic drugs and prioritize human targets
Background Recent efforts to repurpose existing drugs to different indications have been accompanied by a number of computational methods, which incorporate protein-protein interaction networks and signaling pathways, to aid with prioritizing existing targets and/or drugs. However, many of these existing methods are focused on integrating additional data that are only available for a small subset of diseases or conditions. Methods We have designed and implemented a new R-based open-source target prioritization and repurposing method that integrates both canonical intracellular signaling information from five public pathway databases and target information from public sources including OpenTargets.org. The Pathway2Targets algorithm takes a list of significant pathways as input, then retrieves and integrates public data for all targets within those pathways for a given condition. It also incorporates a weighting scheme that is customizable by the user to support a variety of use cases including target prioritization, drug repurposing, and identifying novel targets that are biologically relevant for a different indication. Results As a proof of concept, we applied this algorithm to a public colorectal cancer RNA-sequencing dataset with 144 case and control samples. Our analysis identified 430 targets and ~700 unique drugs based on differential gene expression and signaling pathway enrichment. We found that our highest-ranked predicted targets were significantly enriched in targets with FDA-approved therapeutics for colorectal cancer (p-value < 0.025) that included EGFR, VEGFA, and PTGS2. Interestingly, there was no statistically significant enrichment of targets for other cancers in this same list suggesting high specificity of the results. We also adjusted the weighting scheme to prioritize more novel targets for CRC. This second analysis revealed epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), and two mitogen-activated protein kinases (MAPK14 and MAPK3). These observations suggest that our open-source method with a customizable weighting scheme can accurately prioritize targets that are specific and relevant to the disease or condition of interest, as well as targets that are at earlier stages of development. We anticipate that this method will complement other approaches to repurpose drugs for a variety of indications, which can contribute to the improvement of the quality of life and overall health of such patients.
A Review of the Recent Advances in Alzheimer’s Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics
Alzheimer’s disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer’s disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer’s disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Comprehensive Analysis for Anti-Cancer Target-Indication Prioritization of Placental Growth Factor Inhibitor (PGF) by Use of Omics and Patient Survival Data
The expression of the placental growth factor (PGF) in cancer cells and the tumor microenvironment can contribute to the induction of angiogenesis, supporting cancer cell metabolism by ensuring an adequate blood supply. Angiogenesis is a key component of cancer metabolism as it facilitates the delivery of nutrients and oxygen to rapidly growing tumor cells. PGF is recognized as a novel target for anti-cancer treatment due to its ability to overcome resistance to existing angiogenesis inhibitors and its impact on the tumor microenvironment. We aimed to integrate bioinformatics evidence using various data sources and analytic tools for target-indication identification of the PGF target and prioritize the indication across various cancer types as an initial step of drug development. The data analysis included PGF gene function, molecular pathway, protein interaction, gene expression and mutation across cancer type, survival prognosis and tumor immune infiltration association with PGF. The overall evaluation was conducted given the totality of evidence, to target the PGF gene to treat the cancer where the PGF level was highly expressed in a certain tumor type with poor survival prognosis as well as possibly associated with poor tumor infiltration level. PGF showed a significant impact on overall survival in several cancers through univariate or multivariate survival analysis. The cancers considered as target diseases for PGF inhibitors, due to their potential effects on PGF, are adrenocortical carcinoma, kidney cancers, liver hepatocellular carcinoma, stomach adenocarcinoma, and uveal melanoma.
Predicting ExWAS findings from GWAS data: a shorter path to causal genes
GWAS has identified thousands of loci associated with disease, yet the causal genes within these loci remain largely unknown. Identifying these causal genes would enable deeper understanding of the disease and assist in genetics-based drug development. Exome-wide association studies (ExWAS) are more expensive but can pinpoint causal genes offering high-yield drug targets, yet suffer from a high false-negative rate. Several algorithms have been developed to prioritize genes at GWAS loci, such as the Effector Index (Ei), Locus-2-Gene (L2G), Polygenic Prioritization score (PoPs), and Activity-by-Contact score (ABC) and it is not known if these algorithms can predict ExWAS findings from GWAS data. However, if this were the case, thousands of associated GWAS loci could potentially be resolved to causal genes. Here, we quantified the performance of these algorithms by evaluating their ability to identify ExWAS significant genes for nine traits. We found that Ei, L2G, and PoPs can identify ExWAS significant genes with high areas under the precision recall curve (Ei: 0.52, L2G: 0.37, PoPs: 0.18, ABC: 0.14). Furthermore, we found that for every unit increase in the normalized scores, there was an associated 1.3–4.6-fold increase in the odds of a gene reaching exome-wide significance (Ei: 4.6, L2G: 2.5, PoPs: 2.1, ABC: 1.3). Overall, we found that Ei, L2G, and PoPs can anticipate ExWAS findings from widely available GWAS results. These techniques are therefore promising when well-powered ExWAS data are not readily available and can be used to anticipate ExWAS findings, allowing for prioritization of genes at GWAS loci.
Mesocorticolimbic and Cardiometabolic Diseases—Two Faces of the Same Coin?
The risk behaviors underlying the most prevalent chronic noncommunicable diseases (NCDs) encompass alcohol misuse, unhealthy diets, smoking and sedentary lifestyle behaviors. These are all linked to the altered function of the mesocorticolimbic (MCL) system. As the mesocorticolimbic circuit is central to the reward pathway and is involved in risk behaviors and mental disorders, we set out to test the hypothesis that these pathologies may be approached therapeutically as a group. To address these questions, the identification of novel targets by exploiting knowledge-based, network-based and disease similarity algorithms in two major Thomson Reuters databases (MetaBase™, a database of manually annotated protein interactions and biological pathways, and IntegritySM, a unique knowledge solution integrating biological, chemical and pharmacological data) was performed. Each approach scored proteins from a particular approach-specific standpoint, followed by integration of the scores by machine learning techniques yielding an integrated score for final target prioritization. Machine learning identified characteristic patterns of the already known targets (control targets) with high accuracy (area under curve of the receiver operator curve was ~93%). The analysis resulted in a prioritized list of 250 targets for MCL disorders, many of which are well established targets for the mesocorticolimbic circuit e.g., dopamine receptors, monoamino oxidases and serotonin receptors, whereas emerging targets included DPP4, PPARG, NOS1, ACE, ARB1, CREB1, POMC and diverse voltage-gated Ca2+ channels. Our findings support the hypothesis that disorders involving the mesocorticolimbic circuit may share key molecular pathology aspects and may be causally linked to NCDs, yielding novel targets for drug repurposing and personalized medicine.