Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
867 result(s) for "Dual-Specificity Phosphatases"
Sort by:
Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance
PurposeTherapy resistance is the principal obstacle to achieving cures in cancer patients and its successful tackling requires a deep understanding of the resistance mediators. Increasing evidence indicates that tumor phosphatases are novel and druggable targets in translational oncology and their modulation may hinder tumor growth and motility and potentiate therapeutic sensitivity in various neoplasms via regulation of various signal transduction pathways. Dual-specificity phosphatases (DUSPs) are key players of cell growth, survival and death and have essential roles in tumor initiation, malignant progression and therapy resistance through regulation of the MAPK signaling pathway. In this review, different aspects of DUSPs are discussed.MethodsA comprehensive literature review was performed using various websites including PubMed.ResultsWe provide mechanistic insights into the roles of well-known DUSPs in resistance to a wide range of cancer therapeutic approaches including chemotherapy, radiation and molecular targeted therapy in human malignancies. Moreover, we discuss the development of DUSP modulators, with a focus on DUSP1 and 6 inhibitors. Ultimately, the preclinical investigations of small molecule inhibitors of DUSP1 and 6 are outlined.ConclusionEmerging evidence indicates that the DUSP family is aberrantly expressed in human malignancies and plays critical roles in determining sensitivity to a wide range of cancer therapeutic strategies through regulation of the MAPK signaling pathways. Consequently, targeting DUSPs and their downstream molecules can pave the way for more effective cancer therapies.
Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer
Tumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion. Dusp18 inhibition reduces CRC growth rates, which correlate with high levels of CD8 + T cell activation. Mechanistically, DUSP18 dephosphorylates and stabilizes the USF1 bHLH-ZIP transcription factor. In turn, USF1 induces the SREBF2 gene, which allows cells to accumulate the cholesterol biosynthesis intermediate lanosterol and release it into the tumor microenvironment (TME). There, lanosterol uptake by CD8 + T cells suppresses the mevalonate pathway and reduces KRAS protein prenylation and function, which in turn inhibits their activation and establishes a molecular basis for tumor cell immune escape. Finally, the combination of an anti-PD-1 antibody and Lumacaftor, an FDA-approved small molecule inhibitor of DUSP18, inhibits CRC growth in mice and synergistically enhances anti-tumor immunity. Collectively, our findings support the idea that a combination of immune checkpoint and metabolic blockade represents a rationally-designed, mechanistically-based and potential therapy for CRC. Dual-specificity phosphatases regulate several processes associated with carcinogenesis. Here the authors show that inhibition of the dual-specificity phosphatase DUSP18 improves the activity of tumor-infiltrating CD8 T cells, enhancing response to immune checkpoint blockade in preclinical models of colorectal cancer.
DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers
Molecular alterations of the MAPK pathway are frequently observed in papillary thyroid carcinomas (PTCs). It leads to a constitutive activation of the signalling pathway through an increase in MEK and ERK phosphorylation. ERK is negatively feedback-regulated by Dual Specificity Phosphatases (DUSPs), especially two ERK-specific DUSPs, DUSP5 (nuclear) and DUSP6 (cytosolic). These negative MAPK regulators may play a role in thyroid carcinogenesis. MAPK pathway activation was analyzed in 11 human thyroid cancer cell lines. Both phosphatases were studied in three PCCL3 rat thyroid cell lines that express doxycycline inducible PTC oncogenes (RET/PTC3, H-RASV12 or BRAFV600E). Expression levels of DUSP5 and DUSP6 were quantified in 39 human PTCs. The functional role of DUSP5 and DUSP6 was investigated through their silencing in two human BRAFV600E carcinoma cell lines. BRAFV600E human thyroid cancer cell lines expressed higher phospho-MEK levels but not higher phospho-ERK levels. DUSP5 and DUSP6 are specifically induced by the MEK-ERK pathway in the three PTC oncogenes inducible thyroid cell lines. This negative feedback loop explains the tight regulation of p-ERK levels. DUSP5 and DUSP6 mRNA are overexpressed in human PTCs, especially in BRAFV600E mutated PTCs. DUSP5 and/or DUSP6 siRNA inactivation did not affect proliferation in two BRAFV600E mutated cell lines, which may be explained by a compensatory increase in other phosphatases. In the light of this, we observed a marked DUSP6 upregulation upon DUSP5 inactivation. Despite this, DUSP5 and DUSP6 positively control cell migration and invasion. Our results are in favor of a stronger activation of the MAPK pathway in BRAFV600E PTCs. DUSP5 and DUSP6 have pro-tumorigenic properties in two BRAFV600E PTC cell line models.
The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity
Cancer cells subvert immune surveillance through inhibition of T cell effector function. Elucidation of the mechanism of T cell dysfunction is therefore central to cancer immunotherapy. Here, we report that dual specificity phosphatase 2 (DUSP2; also known as phosphatase of activated cells 1, PAC1) acts as an immune checkpoint in T cell antitumor immunity. PAC1 is selectively upregulated in exhausted tumor-infiltrating lymphocytes and is associated with poor prognosis of patients with cancer. PAC1 hi effector T cells lose their proliferative and effector capacities and convert into exhausted T cells. Deletion of PAC1 enhances immune responses and reduces cancer susceptibility in mice. Through activation of EGR1, excessive reactive oxygen species in the tumor microenvironment induce expression of PAC1, which recruits the Mi-2β nucleosome-remodeling and histone-deacetylase complex, eventually leading to chromatin remodeling of effector T cells. Our study demonstrates that PAC1 is an epigenetic immune regulator and highlights the importance of targeting PAC1 in cancer immunotherapy. Yin and colleagues show that the phosphatase PAC1 (DUSP2) acts as a checkpoint in cytotoxic T cells to restrain their antitumor function.
Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance
By digital profiling of residual breast tumors after neoadjuvant therapy, the authors identify gene expression patterns that correspond with a higher risk of metastasis and recurrence. Activation of the Ras-ERK pathway through loss of DUSP4 confers therapy resistance that can be overcome by combined treatment with MEK inhibitors. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.
Dynamic and structural insights into allosteric regulation on MKP5 a dual-specificity phosphatase
Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 is required for the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results demonstrate critical roles for the allosteric site in coordinating both MKP5 catalysis and MAPK binding. Authors show that the MKP5 phosphatase domain – required for catalysis – contains an allosteric site maintained by key hydrophobic residues, and this allosteric pocket binds MAPK which induces conformational changes that promote MAPK dephosphorylation.
The immune sensitivity caused by DUSP11, an RNA 5′-end maturation phosphatase, is adjusted by a human non-coding RNA, nc886
All cellular transcripts initially have a tri-phosphate (PPP) group at the 5′-end, recognized as a pathogen-associated molecular pattern (PAMP) by a cell’s innate immune system. The removal of 5′-PPP occurs to varying extents, causing immune imbalance. However, how cells manage this situation has not yet been documented. Among 5′-PPP removal mechanisms, recent attention has been towards an RNA phosphatase called Dual Specificity Phosphatase 11 (DUSP11), which acts preferentially on 5′-triphosphorylated (5′-PPP) RNAs transcribed by RNA polymerase III (Pol III) and converts them to a 5′-monophosphorylated (5′-P) form. Here we have elucidated that immune imbalance caused by variable DUSP11 expression in human is controlled by a Pol III-transcribed non-coding RNA (Pol III-ncRNA), nc886. DUSP11 depletion leads to the accumulation of 5′-PPP-Pol III-ncRNAs, making cells respond better to incoming PAMP. Distinctly from other Pol III-ncRNAs, DUSP11 depletion increases the expression of nc886 in a 5′-P form, which mitigates the sensitized immunity. nc886 expression is also increased by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV) that suppresses DUSP11, and, in turn, nc886 stimulates KSHV infectivity. DUSP11 levels in normal tissues are relatively constitutive in mice lacking nc886 but are variable in humans. This wide range of DUSP11 expression and the resultant immune imbalance is probably adjusted by nc886. In summary, our study of DUSP11 and nc886 has uncovered a novel mechanism by which human cells control immune sensitivity, which is intrinsically caused by cellular RNA metabolism, allowing different states of equilibrium between immune status and gene expression.
Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling
Deregulated extracellular signal-regulated kinase (ERK) signaling drives cancer growth. Normally, ERK activity is self-limiting by the rapid inactivation of upstream kinases and delayed induction of dual-specificity MAP kinase phosphatases (MKPs/DUSPs). However, interactions between these feedback mechanisms are unclear. Here we show that, although theMKP DUSP5 both inactivates and anchors ERK in the nucleus, it paradoxically increases and prolongs cytoplasmic ERK activity. The latter effect is caused, at least in part, by the relief of ERK-mediated RAF inhibition. The importance of this spatiotemporal interaction between these distinct feedback mechanisms is illustrated by the fact that expression of oncogenic BRAFV600E, a feedback-insensitive mutant RAF kinase, reprograms DUSP5 into a cell-wide ERK inhibitor that facilitates cell proliferation and transformation. In contrast, DUSP5 deletion causes BRAFV600E-induced ERK hyperactivation and cellular senescence. Thus, feedback interactions within the ERK pathway can regulate cell proliferation and transformation, and suggest oncogene-specific roles for DUSP5 in controlling ERK signaling and cell fate.
DUSP9, a Dual-Specificity Phosphatase with a Key Role in Cell Biology and Human Diseases
Mitogen-activated protein kinases (MAPKs) are essential for proper cell functioning as they regulate many molecular effectors. Careful regulation of MAPKs is therefore required to avoid MAPK pathway dysfunctions and pathologies. The mammalian genome encodes about 200 phosphatases, many of which dephosphorylate the MAPKs and bring them back to an inactive state. In this review, we focus on the normal and pathological functions of dual-specificity phosphatase 9 (DUSP9)/MAP kinase phosphatases-4 (MKP-4). This cytoplasmic phosphatase, which belongs to the threonine/tyrosine dual-specific phosphatase family and was first described in 1997, is known to dephosphorylate ERK1/2, p38, JNK and ASK1, and thereby to control various MAPK pathway cascades. As a consequence, DUSP9 plays a major role in human pathologies and more specifically in cardiac dysfunction, liver metabolic syndromes, diabetes, obesity and cancer including drug response and cell stemness. Here, we recapitulate the mechanism of action of DUSP9 in the cell, its levels of regulation and its roles in the most frequent human diseases, and discuss its potential as a therapeutic target.
Loss of BOP1 confers resistance to BRAF kinase inhibitors in melanoma by activating MAP kinase pathway
Acquired resistance to BRAF kinase inhibitors (BRAFi) is the primary cause for their limited clinical benefit. Although several mechanisms of acquired BRAFi resistance have been identified, the basis for acquired resistance remains unknown in over 40% of melanomas. We performed a large-scale short-hairpin RNA screen, targeting 363 epigenetic regulators and identified Block of Proliferation 1 (BOP1) as a factor the loss of which results in resistance to BRAFi both in cell culture and in mice. BOP1 knockdown promoted down-regulation of the MAPK phosphatases DUSP4 and DUSP6 via a transcription-based mechanism, leading to increased MAPK signaling and BRAFi resistance. Finally, analysis of matched patient-derived BRAFi or BRAFi+MEKi pre- and progressed melanoma samples revealed reduced BOP1 protein expression in progressed samples. Collectively, our results demonstrate that loss of BOP1 and the resulting activation of the MAPK pathway is a clinically relevant mechanism for acquired resistance to BRAFi in melanoma.