Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
845 result(s) for "Dwarfing"
Sort by:
New semi‐dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3‐oxidase 1 using CRISPR‐Cas9 in barley (Hordeum vulgare L.)
Summary The green revolution was based on genetic modification of the gibberellin (GA) hormone system with “dwarfing” gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA‐related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3‐oxidase1 (GA3ox1) as an alternative semi‐dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large‐scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5–10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9‐induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.
Integrated metabolomic and transcriptomic analyses of regulatory mechanisms associated with uniconazole-induced dwarfism in banana
Background Uniconazole is an effective plant growth regulator that can be used in banana cultivation to promote dwarfing and enhance lodging resistance. However, the mechanisms underlying banana dwarfing induced by uniconazole are unknown. In uniconazole-treated bananas, gibberellin (GA) was downregulated compared to the control groups. An integrative analysis of transcriptomes and metabolomes was performed on dwarf bananas induced by uniconazole and control groups. The key pathways involved in uniconazole-induced dwarfism in banana were determined according to the overlap of KEGG annotation of differentially expressed genes and (DEGs) differential abundant metabolites (DAMs). Results Compared with the control groups, the levels of some flavonoids, tannins, and alkaloids increased, and those of most lipids, amino acids and derivatives, organic acids, nucleotides and derivatives, and terpenoids decreased in uniconazole-treated bananas. Metabolome analysis revealed the significant changes of flavonoids in uniconazole-treated bananas compared to control samples at both 15 days and 25 days post treatment. Transcriptome analysis shows that the DEGs between the treatment and control groups were related to a series of metabolic pathways, including lignin biosynthesis, phenylpropanoid metabolism, and peroxidase activity. Comprehensive analysis of the key pathways of co-enrichment of DEGs and DAMs from 15 d to 25 d after uniconazole treatment shows that flavonoid biosynthesis was upregulated. Conclusions In addition to the decrease in GA, the increase in tannin procyanidin B1 may contribute to dwarfing of banana plants by inhibiting the activity of GA. The increased of flavonoid biosynthesis and the change of lignin biosynthesis may lead to dwarfing phenotype of banana plants. This study expands our understanding of the mechanisms underlying uniconazole-induced banana dwarfing.
Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment
Background Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. Results We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1 df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. Conclusions This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers.
Fibre-specific regulation of lignin biosynthesis improves biomass quality in Populus
• Lignin is a major component of cell wall biomass and decisively affects biomass utilisation. Engineering of lignin biosynthesis is extensively studied, while lignin modification often causes growth defects. • We developed a strategy for cell-type-specific modification of lignin to achieve improvements in cell wall property without growth penalty. We targeted a lignin-related transcription factor, LTF1, for modification of lignin biosynthesis. LTF1 can be engineered to a nonphosphorylation form which is introduced into Populus under the control of either a vessel-specific or fibre-specific promoter. • The transgenics with lignin suppression in vessels showed severe dwarfism and thin-walled vessels, while the transgenics with lignin suppression in fibres displayed vigorous growth with normal vessels under phytotron, glasshouse and field conditions. In-depth lignin structural analyses revealed that such cell-type-specific downregulation of lignin biosynthesis led to the alteration of overall lignin composition in xylem tissues reflecting the population of distinctive lignin polymers produced in vessel and fibre cells. • This study demonstrates that fibre-specific suppression of lignin biosynthesis resulted in the improvement of wood biomass quality and saccharification efficiency and presents an effective strategy to precisely regulate lignin biosynthesis with desired growth performance.
MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression
Dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern apple (Malus domestica) production. M26 is a semi-dwarfing rootstock that is used worldwide, but identifying intensive dwarfing rootstock is a major goal of apple breeding programs. Herein, we show that MdWRKY9 mediates dwarfing by directly inhibiting the transcription of the brassinosteroid (BR) rate-limiting synthetase MdDWF4 and reducing BR production. We found that the transcriptional factor MdWRKY9 is highly expressed in all tested dwarfing rootstocks. Transgenic lines of M26 rootstock overexpressing MdWRKY9 exhibit further dwarfing, which resulted from the reduced BR levels and was reversed via exogenous brassinolide treatment. Both an in vivo chromatin immunoprecipitation (ChIP) analysis and an in vitro electrophoretic mobility shift assay (EMSA) indicated that MdWRKY9 binds to the promoter of MdDWF4. Furthermore, MdWRKY9 repressed MdDWF4 expression in stable transgenic apple plants as determined by quantitative PCR. In addition, RNA-interfered expression of MdWRKY9 in transiently transformed apple calli led to a significant increase of MdDWF4, suggesting MdWRKY9 plays a critical role in regulating the expression of MdDWF4. We report a novel dwarfing mechanism in perennial woody plants that involves WRKY-controlled BR production, and present a new dwarfing M26 rootstock for potential applications in apple production.
Potentially Useful Dwarfing or Semi-dwarfing Genes in Rice Breeding in Addition to the sd1 Gene
The “Green revolution” gene sd1 has been used widely in the breeding of modern rice varieties for over half a century. The application of this gene has increased rice yields and thereby supported a significant proportion of the global population. The use of a single gene, however, has raised concerns in the scientific community regarding its durability, especially given the bottleneck in genetic background and the need for large input of fertilizer. New dwarfing or semi-dwarfing genes are needed to alleviate our dependence on the sole “Green revolution” gene. In the past few years, several new dwarfing and semi-dwarfing genes as well as their mutants have been reported. Here, we provide an extensive review of the recent discoveries concerning newly identified genes that are potentially useful in rice breeding, including methods employed to create and effectively screen new rice mutants, the phenotypic characteristics of the new dwarfing and semi-dwarfing mutants, potential values of the new dwarfing and semi-dwarfing genes in rice breeding, and potential molecular mechanisms associated with the newly identified genes.
Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice
• Cellular abscisic acid (ABA) concentration is determined by both de novo biosynthesis and recycling via β-glucosidase(s). However, which rice β-glucosidase(s) are involved in this process remains unknown. Here, we report on a chloroplastic β-glucosidase isoenzyme, Os3BGlu6, that functions in ABA recycling in rice. • Disruption of Os3BGlu6 in rice resulted in dwarfism, lower ABA content in leaves, drought-sensitivity, lower photosynthesis rate and higher intercellular CO₂ concentration. Os3BGlu6 could hydrolyze ABA-GE to ABA in vitro. The reversion and overexpression rice lines restored or increased the drought tolerance as shown by the higher β-glucosidase activity, ABA concentrations and expressions of ABA- and drought-responsive genes. Drought induced Os3BGlu6 to form dimers, and the degree of polymerization correlated well with the increase in cellular ABA concentrations and drought tolerance in rice. • Os3BGlu6 was responsive to drought and ABA treatments, and the protein was localized to the chloroplast. Disruption of Os3BGlu6 resulted in the increased stomatal density and impaired stomatal movement. Transcriptomics revealed that disruption of Os3BGlu6 resulted in chloroplastic oxidative stress and lowered Rubisco activity even under normal conditions. • Taken together, these results suggest that chloroplastically localized Os3BGlu6 significantly affects cellular ABA pools, thereby affecting drought tolerance and photosynthesis in rice.
The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields
Key messageTaD11-2A affects grain size and root length and its natural variations are associated with significant differences in yield-related traits in wheat.Brassinosteroids (BRs) control many important agronomic traits and therefore the manipulation of BR components could improve crop productivity and performance. However, the potential effects of BR-related genes on yield-related traits and stress tolerance in wheat (Triticum aestivum L.) remain poorly understood. Here, we identified TaD11 genes in wheat (rice D11 orthologs) that encoded enzymes involved in BR biosynthesis. TaD11 genes were highly expressed in roots (Zadoks scale: Z11) and grains (Z75), while expression was significantly suppressed by exogenous BR (24-epiBL). Ectopic expression of TaD11-2A rescued the abnormal panicle structure and plant height (PH) of the clustered primary branch 1 (cpb1) mutant, and also increased endogenous BR levels, resulting in improved grain yields and grain quality in rice. The tad11-2a-1 mutant displayed dwarfism, smaller grains, sensitivity to 24-epiBL, and reduced endogenous BR contents. Natural variations in TaD11-2A were associated with significant differences in yield-related traits, including PH, grain width, 1000-grain weight, and grain yield per plant, and its favorable haplotype, TaD11-2A-HapI was subjected to positive selection during wheat breeding. Additionally, TaD11-2A influenced root length and salt tolerance in rice and wheat at seedling stages. These results indicated the important role of BR TaD11 biosynthetic genes in controlling grain size and root length, and also highlighted their potential in the molecular biological analysis of wheat.
Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development
Key messageThis study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (< 0.4 cM from the centromere). Using a large segregating population (~ 2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
Novel Rht-1 dwarfing genes
Reduced height-1 (Rht-1) dwarfing alleles have provided an essential breeding tool for increasing wheat grain yields and providing lodging resistance under high inputs. In this issue (pages 443–455), Van De Velde et al. demonstrate the potential of novel Rht-1 alleles for allowing more flexible control of stature and preharvest sprouting resistance in wheat breeding programmes. On a fundamental level, these alleles provide an important opportunity to uncover the signalling events that are responsible for improving these traits.