Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
146,110
result(s) for
"Dynamic simulations"
Sort by:
How cholesterol stiffens unsaturated lipid membranes
by
Heberle, Frederick A.
,
Ashkar, Rana
,
Barrera, Francisco N.
in
Antibiotics
,
area compressibility
,
BASIC BIOLOGICAL SCIENCES
2020
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it iswell understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure–property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach—combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (²H NMR) spectroscopy, and molecular dynamics (MD) simulations—we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer’s packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure–property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol’s role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid–protein interactions.
Journal Article
Structural flexibility and protein adaptation to temperature
by
Meng, Xian-liang
,
Dong, Yun-wei
,
Liao, Ming-ling
in
Adaptation
,
Amino acid sequence
,
Amino acids
2018
Orthologous proteins of species adapted to different temperatures exhibit differences in stability and function that are interpreted to reflect adaptive variation in structural “flexibility.” However, quantifying flexibility and comparing flexibility across proteins has remained a challenge. To address this issue, we examined temperature effects on cytosolic malate dehydrogenase (cMDH) orthologs from differently thermally adapted congeners of five genera of marine molluscs whose field body temperatures span a range of ∼60 °C. We describe consistent patterns of convergent evolution in adaptation of function [temperature effects on K
M of cofactor (NADH)] and structural stability (rate of heat denaturation of activity). To determine how these differences depend on flexibilities of overall structure and of regions known to be important in binding and catalysis, we performed molecular dynamics simulation (MDS) analyses. MDS analyses revealed a significant negative correlation between adaptation temperature and heat-induced increase of backbone atom movements [root mean square deviation (rmsd) of main-chain atoms]. Root mean square fluctuations (RMSFs) of movement by individual amino acid residues varied across the sequence in a qualitatively similar pattern among orthologs. Regions of sequence involved in ligand binding and catalysis—termed mobile regions 1 and 2 (MR1 and MR2), respectively—showed the largest values for RMSF. Heat-induced changes in RMSF values across the sequence and, importantly, in MR1 and MR2 were greatest in cold-adapted species. MDS methods are shown to provide powerful tools for examining adaptation of enzymes by providing a quantitative index of protein flexibility and identifying sequence regions where adaptive change in flexibility occurs.
Journal Article
Atomic-level characterization of protein–protein association
by
Jacobson, Daniel
,
Sritharan, Duluxan
,
Shaw, David E.
in
Biological Sciences
,
Biophysics and Computational Biology
,
Interfaces
2019
Despite the biological importance of protein–protein complexes, determining their structures and association mechanisms remains an outstanding challenge. Here, we report the results of atomic-level simulations in which we observed five protein–protein pairs repeatedly associate to, and dissociate from, their experimentally determined native complexes using a molecular dynamics (MD)–based sampling approach that does not make use of any prior structural information about the complexes. To study association mechanisms, we performed additional, conventional MD simulations, in which we observed numerous spontaneous association events. A shared feature of native association for these five structurally and functionally diverse protein systems was that if the proteins made contact far from the native interface, the native state was reached by dissociation and eventual reassociation near the native interface, rather than by extensive interfacial exploration while the proteins remained in contact. At the transition state (the conformational ensemble from which association to the native complex and dissociation are equally likely), the protein–protein interfaces were still highly hydrated, and no more than 20% of native contacts had formed.
Journal Article
Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations
by
Grubmüller, Helmut
,
Scheuring, Simon
,
Russek, Andreas
in
Binding
,
Biological Physics
,
Biological Sciences
2019
Receptor–ligand interactions are essential for biological function and their binding strength is commonly explained in terms of static lock-and-key models based on molecular complementarity. However, detailed information on the full unbinding pathway is often lacking due, in part, to the static nature of atomic structures and ensemble averaging inherent to bulk biophysics approaches. Here we combine molecular dynamics and high-speed force spectroscopy on the streptavidin–biotin complex to determine the binding strength and unbinding pathways over the widest dynamic range. Experiment and simulation show excellent agreement at overlapping velocities and provided evidence of the unbinding mechanisms. During unbinding, biotin crosses multiple energy barriers and visits various intermediate states far from the binding pocket, while streptavidin undergoes transient induced fits, all varying with loading rate. This multistate process slows down the transition to the unbound state and favors rebinding, thus explaining the long lifetime of the complex. We provide an atomistic, dynamic picture of the unbinding process, replacing a simple two-state picture with one that involves many routes to the lock and ratedependent induced-fit motions for intermediates, which might be relevant for other receptor–ligand bonds.
Journal Article
Promoting transparency and reproducibility in enhanced molecular simulations
by
Provasi, Davide
,
Rydzewski, Jakub
,
Bolhuis, Peter G
in
Consortia
,
Free energy
,
Molecular dynamics
2019
The PLUMED consortium unifies developers and contributors to PLUMED, an open-source library for enhanced-sampling, free-energy calculations and the analysis of molecular dynamics simulations. Here, we outline our efforts to promote transparency and reproducibility by disseminating protocols for enhanced-sampling molecular simulations.
Journal Article
Experimental and molecular dynamics simulation studies on the physical properties of three HBc-VLP derivatives as nanoparticle protein vaccine candidates
by
Luo, Hong
,
Ma, Yanyan
,
Gerstweiler, Lukas
in
Allergy and Immunology
,
Antigen processing
,
Antigens
2024
•Partial virus-like particle models were constructed for chimeric vaccine simulations.•MIR-inserted sequence properties have a greater impact on HBc self-assembly than its length.•MD simulation well predicts the surface hydrophobicity and overall stability of HBc-based vaccines.•MD simulation minimizes design failures and provides guidance for the downstream processing of chimeric VLP vaccines.
Self-assembling virus-like particles (VLPs) are promising platforms for vaccine development. However, the unpredictability of the physical properties, such as self-assembly capability, hydrophobicity, and overall stability in engineered protein particles fused with antigens, presents substantial challenges in their downstream processing. We envision that these challenges can be addressed by combining more precise computer-aided molecular dynamics (MD) simulations with experimental studies on the modified products, with more to-date forcefield descriptions and larger models closely resembling real assemblies, realized by rapid advancement in computing technology. In this study, three chimeric designs based on the hepatitis B core (HBc) protein as model vaccine candidates were constructed to study and compare the influence of inserted epitopes as well as insertion strategy on HBc modifications. Large partial VLP models containing 17 chains for the HBc chimeric model vaccines were constructed based on the wild-type (wt) HBc assembly template. The findings from our simulation analysis have demonstrated good consistency with experimental results, pertaining to the surface hydrophobicity and overall stability of the chimeric vaccine candidates. Furthermore, the different impact of foreign antigen insertions on the HBc scaffold was investigated through simulations. It was found that separately inserting two epitopes into the HBc platform at the N-terminal and the major immunogenic regions (MIR) yields better results compared to a serial insertion at MIR in terms of protein structural stability. This study substantiates that an MD-guided design approach can facilitate vaccine development and improve its manufacturing efficiency by predicting products with extreme surface hydrophobicity or structural instability.
Journal Article
Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN
by
Demir, Özlem
,
Moeller, Nicholas H.
,
Aihara, Hideki
in
60 APPLIED LIFE SCIENCES
,
Accuracy
,
Antiviral agents
2022
High-fidelity replication of the large RNA genome of coronaviruses (CoVs) is mediated by a 3′-to-5′ exoribonuclease (ExoN) in nonstructural protein 14 (nsp14), which excises nucleotides including antiviral drugs misincorporated by the low-fidelity viral RNA-dependent RNA polymerase (RdRp) and has also been implicated in viral RNA recombination and resistance to innate immunity. Here, we determined a 1.6-Å resolution crystal structure of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) ExoN in complex with its essential cofactor, nsp10. The structure shows a highly basic and concave surface flanking the active site, comprising several Lys residues of nsp14 and the N-terminal amino group of nsp10. Modeling suggests that this basic patch binds to the template strand of double-stranded RNA substrates to position the 30 end of the nascent strand in the ExoN active site, which is corroborated by mutational and computational analyses. We also show that the ExoN activity can rescue a stalled RNA primer poisoned with sofosbuvir and allow RdRp to continue its extension in the presence of the chain-terminating drug, biochemically recapitulating proofreading in SARS-CoV-2 replication. Molecular dynamics simulations further show remarkable flexibility of multidomain nsp14 and suggest that nsp10 stabilizes ExoN for substrate RNA binding to support its exonuclease activity. Our high-resolution structure of the SARS-CoV-2 ExoN–nsp10 complex serves as a platform for future development of anticoronaviral drugs or strategies to attenuate the viral virulence.
Journal Article
Pore translocation of knotted DNA rings
by
Micheletti, Cristian
,
Suma, Antonio
in
Biophysics and Computational Biology
,
Biopolymers
,
Deoxyribonucleic acid
2017
We use an accurate coarse-grained model for DNA and stochastic molecular dynamics simulations to study the pore translocation of 10-kbp–long DNA rings that are knotted. By monitoring various topological and physical observables we find that there is not one, as previously assumed, but rather two qualitatively different modes of knot translocation. For both modes the pore obstruction caused by knot passage has a brief duration and typically occurs at a late translocation stage. Both effects are well in agreement with experiments and can be rationalized with a transparent model based on the concurrent tensioning and sliding of the translocating knotted chains. We also observed that the duration of the pore obstruction event is more controlled by the knot translocation velocity than the knot size. These features should advance the interpretation and design of future experiments aimed at probing the spontaneous knotting of biopolymers.
Journal Article
Molecular dynamics simulations and drug discovery
by
McCammon, J Andrew
,
Durrant, Jacob D
in
allosteric binding sites
,
Allosteric Site
,
Biomedical and Life Sciences
2011
This review discusses the many roles atomistic computer simulations of macromolecular (for example, protein) receptors and their associated small-molecule ligands can play in drug discovery, including the identification of cryptic or allosteric binding sites, the enhancement of traditional virtual-screening methodologies, and the direct prediction of small-molecule binding energies. The limitations of current simulation methodologies, including the high computational costs and approximations of molecular forces required, are also discussed. With constant improvements in both computer power and algorithm design, the future of computer-aided drug design is promising; molecular dynamics simulations are likely to play an increasingly important role.
Journal Article
Real-time observation of ligand-induced allosteric transitions in a PDZ domain
by
Gulzar, Adnan
,
Stock, Gerhard
,
Jankovic, Brankica
in
Affinity
,
Allosteric properties
,
Allosteric Regulation
2020
While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein. The subsequent response of the protein, covering four decades of time, ranging from ∼1 ns to ∼10 μs, can be rationalized by a remodeling of its rugged free-energy landscape, with very subtle shifts in the populations of a small number of structurally well-defined states. It is proposed that structurally and dynamically driven allostery, often discussed as limiting scenarios of allosteric communication, actually go hand-in-hand, allowing the protein to adapt its free-energy landscape to incoming signals.
Journal Article