Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Dynamin III - genetics"
Sort by:
A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis
2014
The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles (‘bulk’ endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and that operates during intense synaptic activity. Neurons propagate electrical signals from one cell to the next using small molecules called neurotransmitters. These molecules are held inside small compartments called synaptic vesicles. Once a neuron receives an electrical stimulus, the membranes that enclose the synaptic vesicles fuse with the plasma membrane that encloses the neuron. This releases the neurotransmitters, which then trigger an electrical signal in the neighboring cell. Once the neurotransmitters are released, the vesicle membrane is rapidly reinternalized from the plasma membrane in a process called endocytosis and then recycled, ready for the next round of signal transmission. The process of synaptic vesicle membrane endocytosis and recycling has been studied extensively, and several different mechanisms by which it occurs have been identified. The best understood relies on a protein called clathrin, and is thought to be essential for nervous system function. Recently, however, a mechanism of vesicle membrane endocytosis that does not involve clathrin was identified. This mechanism, called bulk endocytosis, involves reinternalizing large regions of the cell plasma membrane to generate large compartments called vacuoles, from which new synaptic vesicles eventually form. This mechanism has been observed when neurons fire at high frequency. The cellular processes underlying bulk endocytosis are not well understood, although several studies suggest proteins called dynamins are important. Wu et al. simulated the conditions a cell experiences during high levels of activity in neurons that lacked the two major dynamins present at the synapses between neurons—dynamin 1 and dynamin 3. In these neurons, robust bulk endocytosis occurred, suggesting that these two major neuronal dynamins do not play a role in this process. Furthermore, formation of vesicles from the vacuoles generated by bulk endocytosis appeared to be clathrin-independent. These findings point to the occurrence of a pathway of synaptic vesicle recycling that bypasses the need for dynamin 1 and 3 as well as for clathrin. To reconcile these results with previously published work, Wu et al. propose that dynamins may only be required for processes that also require clathrin. But how are vesicles recycled during bulk endocytosis if dynamins are not involved? There are currently few leads to base alternative mechanisms on. Further work is required to unravel this mystery, and to provide insights into how clathrin-dependent and independent recycling processes are linked during high neuronal activity.
Journal Article
DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser parkinsonism: a genome-wide linkage and association study
2016
Leucine-rich repeat kinase 2 (LRRK2) mutation 6055G→A (Gly2019Ser) accounts for roughly 1% of patients with Parkinson's disease in white populations, 13–30% in Ashkenazi Jewish populations, and 30–40% in North African Arab-Berber populations, although age of onset is variable. Some carriers have early-onset parkinsonism, whereas others remain asymptomatic despite advanced age. We aimed to use a genome-wide approach to identify genetic variability that directly affects LRRK2 Gly2019Ser penetrance.
Between 2006 and 2012, we recruited Arab-Berber patients with Parkinson's disease and their family members (aged 18 years or older) at the Mongi Ben Hamida National Institute of Neurology (Tunis, Tunisia). Patients with Parkinson's disease were diagnosed by movement disorder specialists in accordance with the UK Parkinson's Disease Society Brain Bank criteria, without exclusion of familial parkinsonism. LRRK2 carrier status was confirmed by Sanger sequencing or TaqMan SNP assays-on-demand. We did genome-wide linkage analysis using data from multi-incident Arab-Berber families with Parkinson's disease and LRRK2 Gly2019Ser (with both affected and unaffected family members). We assessed Parkinson's disease age of onset both as a categorical variable (dichotomised by median onset) and as a quantitative trait. We used data from another cohort of unrelated Tunisian LRRK2 Gly2019Ser carriers for subsequent locus-specific genotyping and association analyses. Whole-genome sequencing in a subset of 14 unrelated Arab-Berber individuals who were LRRK2 Gly2019Ser carriers (seven with early-onset disease and seven elderly unaffected individuals) subsequently informed imputation and haplotype analyses. We replicated the findings in separate series of LRRK2 Gly2019Ser carriers originating from Algeria, France, Norway, and North America. We also investigated associations between genotype, gene, and protein expression in human striatal tissues and murine LRRK2 Gly2019Ser cortical neurons.
Using data from 41 multi-incident Arab-Berber families with Parkinson's disease and LRRK2 Gly2019Ser (150 patients and 103 unaffected family members), we identified significant linkage on chromosome 1q23.3 to 1q24.3 (non-parametric logarithm of odds score 2·9, model-based logarithm of odds score 4·99, θ=0 at D1S2768). In a cohort of unrelated Arab-Berber LRRK2 Gly2019Ser carriers, subsequent association mapping within the linkage region suggested genetic variability within DNM3 as an age-of-onset modifier of disease (n=232; rs2421947; haplotype p=1·07 × 10−7). We found that DNM3 rs2421947 was a haplotype tag for which the median onset of LRRK2 parkinsonism in GG carriers was 12·5 years younger than that of CC carriers (Arab-Berber cohort, hazard ratio [HR] 1·89, 95% CI 1·20–2·98). Replication analyses in separate series from Algeria, France, Norway, and North America (n=263) supported this finding (meta-analysis HR 1·61, 95% CI 1·15–2·27, p=0·02). In human striatum, DNM3 expression varied as a function of rs2421947 genotype, and dynamin-3 localisation was perturbed in murine LRRK2 Gly2019Ser cortical neurons.
Genetic variability in DNM3 modifies age of onset for LRRK2 Gly2019Ser parkinsonism and informs disease-relevant translational neuroscience. Our results could be useful in genetic counselling for carriers of this mutation and in clinical trial design.
The Canada Excellence Research Chairs (CERC), Leading Edge Endowment Fund (LEEF), Don Rix BC Leadership Chair in Genetic Medicine, National Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael J Fox Foundation, Mayo Foundation, the Roger de Spoelberch Foundation, and GlaxoSmithKline.
Journal Article
MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation
2013
In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient
sapje
zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish,
mdx
5cv
mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.
Journal Article
Integrated multi-omic analysis of low-grade ovarian serous carcinoma collected from short and long-term survivors
by
Sun, Charlotte S.
,
Dalgard, Clifton L.
,
Wong, Kwong-Kwok
in
Biomedical and Life Sciences
,
Biomedicine
,
Cancer microenvironment
2022
Background
Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors.
Methods
Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed.
Results
We identified single-nucleotide variants (SNVs) (range: 5688–14,833 per sample), insertion and deletion variants (indels) (range: 880–1065), and regions with copy number variants (CNVs) (range: 62–335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included
KRAS
,
NRAS
,
EIF1AX
,
UBR5
, and
DNM3 mutations
. Mutations in
DNM3
and
UBR5
have not previously been reported in LGSOC. For the two samples, somatic
DNM3
nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of
DNM3
, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets.
Conclusions
This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in
DNM3
, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC.
Journal Article
Transcriptomes of cochlear inner and outer hair cells from adult mice
2018
Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.
Journal Article
SNCA but not DNM3 and GAK modifies age at onset of LRRK2-related Parkinson’s disease in Chinese population
by
Zhi-hua, Yang
,
Cheng-yuan, Mao
,
Xin-chao, Hu
in
Cyclin G
,
Dynamin
,
Genome-wide association studies
2019
BackgroundRecently, rs2421947 in DNM3 (dynamin 3) was reported as a genetic modifier of age at onset (AAO) of LRRK2 G2019S-related Parkinson’s disease (PD) in a genome-wide association study in Arab-Berber population. Rs356219 in SNCA (α-synuclein) was also reported to regulate the AAO of LRRK2-related PD in European populations, and GAK (Cyclin G-associated kinase) rs1524282 was reported to be associated with an increased PD risk with an interaction with SNCA rs356219. G2019S variant is rare in Asian populations, whereas two other Asian-specific LRRK2 variants, G2385R and R1628P, are more frequent with a twofold increased risk of PD.MethodsIn this study, we investigated whether rs2421947, rs356219 and rs1524282 modified AAO in LRRK2-related PD patients in Han Chinese population. We screened LRRK2 G2385R and R1628P variants in 732 PD patients and 1992 healthy controls, and genotyped DNM3 rs2421947, SNCA rs356219 and GAK rs1524282 among the LRRK2 carriers.ResultsThe SNCA rs356219-G allele was found to increase the risk of PD in LRRK2 carriers (OR 1.50, 95%CI 1.08–2.01, P = 0.016), and the AAO of AG + GG genotypes was 4 years earlier than AA genotype (P = 0.006). Nonetheless, no similar association was found in DNM3 rs2421947 and GAK rs1524282.ConclusionsOur results show that SNCA but not DNM3 or GAK is associated with AAO of LRRK2-PD patients in Chinese population.
Journal Article
Exon-focused genome-wide association study of obsessive-compulsive disorder and shared polygenic risk with schizophrenia
2016
Common single-nucleotide polymorphisms (SNPs) account for a large proportion of the heritability of obsessive-compulsive disorder (OCD). Co-ocurrence of OCD and schizophrenia is commoner than expected based on their respective prevalences, complicating the clinical management of patients. This study addresses two main objectives: to identify particular genes associated with OCD by SNP-based and gene-based tests; and to test the existence of a polygenic risk shared with schizophrenia. The primary analysis was an exon-focused genome-wide association study of 370 OCD cases and 443 controls from Spain. A polygenic risk model based on the Psychiatric Genetics Consortium schizophrenia data set (PGC-SCZ2) was tested in our OCD data. A polygenic risk model based on our OCD data was tested on previous data of schizophrenia from our group. The most significant association at the gene-based test was found at
DNM3
(
P
=7.9 × 10
−5
), a gene involved in synaptic vesicle endocytosis. The polygenic risk model from PGC-SCZ2 data was strongly associated with disease status in our OCD sample, reaching its most significant value after removal of the major histocompatibility complex region (lowest
P
=2.3 × 10
−6
, explaining 3.7% of the variance). The shared polygenic risk was confirmed in our schizophrenia data. In conclusion,
DNM3
may be involved in risk to OCD. The shared polygenic risk between schizophrenia and OCD may be partially responsible for the frequent comorbidity of both disorders, explaining epidemiological data on cross-disorder risk. This common etiology may have clinical implications.
Journal Article
Protein partners of dynamin-1 in the retina
by
JANG, GEENG-FU
,
HAGSTROM, STEPHANIE A.
,
EBKE, LINDSEY A.
in
Alternative splicing
,
Animals
,
Antibodies - chemistry
2013
Dynamin proteins are involved in vesicle generation, providing mechanical force to excise newly formed vesicles from membranes of cellular compartments. In the brain, dynamin-1, dynamin-2, and dynamin-3 have been well studied; however, their function in the retina remains elusive. A retina-specific splice variant of dynamin-1 interacts with the photoreceptor-specific protein Tubby-like protein 1 (Tulp1), which when mutated causes an early onset form of autosomal recessive retinitis pigmentosa. Here, we investigated the role of the dynamins in the retina, using immunohistochemistry to localize dynamin-1, dynamin-2, and dynamin-3 and immunoprecipitation followed by mass spectrometry to explore dynamin-1 interacting proteins in mouse retina. Dynamin-2 is primarily confined to the inner segment compartment of photoreceptors, suggesting a role in outer segment protein transport. Dynamin-3 is present in the terminals of photoreceptors and dendrites of second-order neurons but is most pronounced in the inner plexiform layer where second-order neurons relay signals from photoreceptors. Dynamin-1 appears to be the dominant isoform in the retina and is present throughout the retina and in multiple compartments of the photoreceptor cell. This suggests that it may function in multiple cellular pathways. Surprisingly, dynamin-1 expression and localization did not appear to be disrupted in tulp1−/− mice. Immunoprecipitation experiments reveal that dynamin-1 associates primarily with proteins involved in cytoskeletal-based membrane dynamics. This finding is confirmed by western blot analysis. Results further implicate dynamin-1 in vesicular protein transport processes relevant to synaptic and post-Golgi pathways and indicate a possible role in photoreceptor stability.
Journal Article
TBX15 rs98422, DNM3 rs1011731, RAD51B rs8017304, and rs2588809 Gene Polymorphisms and Associations With Pituitary Adenoma
by
LAURINAITYTĖ, INGA
,
GLEBAUSKIENĖ, BRIGITA
,
VILKEVIČIŪTĖ, ALVITA
in
Adenoma - genetics
,
Brain cancer
,
Brain research
2021
Pituitary adenoma (PA) is a benign tumor of parenchymal cells in the adenohypophysis, and it's development is strongly associated with genetic factors.This study aim was to find whether TBX15 rs98422, DNM3 rs1011731, RAD51B rs8017304, and rs2588809 single nucleotide polymorphisms can be associated with pituitary adenoma. While the TBX15 gene belongs to the T-box family of genes and is a transcription factor involved in many developmental processes, the DNM3 encodes a protein that is a member of the dynamin family with mechanochemical properties involved in actin-membrane processes, predominantly in membrane budding, and the RAD51B gene plays a significant role in homologous recombination in DNA repair for genome stability.
The study enrolled 113 patients with pituitary adenoma and 283 healthy control subjects. DNA samples were extracted and purified from peripheral blood leukocytes. Genotyping was carried out using real-time polymerase chain reaction. The results were assessed using binomial logistic regression.
Our study revealed that RAD51B rs2588809 TT genotype could be associated with PA development in the co-dominant (OR=6.833; 95% CI=2.557-18.262; p<0.001) and recessive (OR=7.066; 95% CI=2.667-18.722; p<0.001) models. The same results were observed in females but not in males and PA without recurrence, while in PA with recurrence, no statistically significant results were obtained.
RAD51B rs2588809 TT genotype may increase the odds of PA development in women; it may also be associated with non-recurrent PA development.
Journal Article
Sézary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3
2008
Sezary syndrome (SS) is a rare, aggressive CD4
+
cutaneous T-cell lymphoma (CTCL); molecular traits differentiating SS from nonleukemic mycosis fungoides (MF) and from inflammatory skin diseases (ID) are not sufficiently characterized. Peripheral blood mononuclear cells (PBMC) of 10 SS patients and 10 healthy donors (HD) were screened by Affymetrix U133Plus2.0 chips for differential gene expression. Ten candidate genes were confirmed by qRT-PCR to be significantly overexpressed in CD4
+
T cells of SS versus HD/ID. For easier clinical use, these genes were re-analyzed in PBMC; qRT-PCR confirmed five novel (DNM3, IGFL2, CDO1, NEDD4L, KLHDC5) and two known genes (PLS3, TNFSF11) to be significantly overexpressed in SS. Multiple logistic regression analysis revealed that CDO1 and DNM3 had the highest discriminative power in combination. Upon comparison of PBMC and skin samples of SS versus MF, CDO1 and DNM3 were found upregulated only in SS. Using anti-CDO1 antisera, differential expression of CDO1 protein was confirmed in SS CD4
+
T cells. Interestingly, DNM3 and CDO1 are known to be regulated by SS-associated transcription factors TWIST1 and c-myb, respectively. Furthermore, CDO1 catalyzes taurine synthesis and taurine inhibits apoptosis and promotes chemoprotection. In summary, CDO1 and DNM3 may improve the diagnosis of SS and open novel clues to its pathogenesis.
Journal Article