Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "EGM2008"
Sort by:
An Algorithm for Strapdown Airborne Gravity Disturbance Vector Measurement Based on High-Precision Navigation and EGM2008
Attitude errors, accelerometer bias, the gravity disturbance vector, and their coupling are the primary factors obstructing strapdown airborne vector gravimetry. This paper takes the geocentric inertial frame as a reference and solves the kinematic equations of its motion and its errors of the body frame and local geographic frame in the Lie group, respectively; the attitude accuracy is improved through a high-precision navigation algorithm. The constant accelerometer bias is estimated through Kalman filtering and is deducted from the accelerometer output to eliminate its influence. Based on the EGM2008 model, the low-frequency components of the gravity disturbance vector are corrected. The gravity disturbance vectors after model data fusion were low-pass filtered to obtain the ultimate results. This method was applied to flight experimental data in the South China Sea, and a gravity anomaly accuracy of better than 0.5 mGal, a northward gravity disturbance accuracy of 0.85 mGal, and an eastward gravity disturbance accuracy of 4.0 mGal were obtained, with a spatial resolution of approximately 4.8 km.
Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates
Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.
Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope
Strapdown gravity systems are increasingly employed in airborne geophysical exploration and geodetic studies due to advantages such as ease of installation, wide dynamic range, and adaptability to various platforms, including airplanes, helicopters, and large drones. This study presents results from an airborne gravity survey conducted over the northeastern sector of Sardinia (Italy), using a high-resolution strapdown gravity ensuring an accuracy of approximately 1 mGal. Data were collected at an average altitude of 1800 m with a spatial resolution of 3.0 km. The survey focused on the Sos Enattos area near Lula (Nuoro province), a candidate site for the Einstein Telescope (ET), a third-generation gravitational wave observatory. The ideal site is required to be geologically and seismically stable with a well-characterized subsurface. To support this, we performed a new gravity survey to complement existing geological and seismic data aimed at characterizing the mid-to-shallow crustal structure of Sos Enattos. Results show that the strapdown system effectively detects gravity anomalies linked to crustal sources down to ~3.5 km, with particular emphasis within the 1–2 km depth range. Airborne gravity data reveal higher frequency anomalies than those resolved by the EGM2008 global gravity model and show good agreement with local terrestrial gravity data. Forward modeling of the gravity field suggests a crust dominated by alternating high-density metamorphic rocks and granitoid intrusions of the Variscan basement. These findings enhance the geophysical understanding of Sos Enattos and support its candidacy for the ET site.
Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.
A study of the EGM2008 model of Earth's gravitational field
The Earth Gravity Model 2008 (EGM2008) is now some years old, and yet information on how to use it to calculate Earth's gravity remains obscure outside the field of geodesy. We describe the mathematics necessary to implement EGM2008, and use this to discuss several points of the model: its sensitivity to the number of spherical harmonics being summed, nuances and a trap for physicists and mathematicians in the normalisation it uses, and a comparison with other work. We conclude that one must not overestimate the precision shown by a global-fit model such as EGM2008.
Vertical Deflections and Gravity Disturbances Derived from HY-2A Data
The first Chinese altimetry satellite, Haiyang-2A (HY-2A), which was launched in 2011, has provided a large amount of sea surface heights which can be used to derive marine gravity field. This paper derived the vertical deflections and gravity disturbances using HY-2A observations for the major area of the whole Earth’s ocean from 60°S and 60°N. The results showed that the standard deviations (STD) of vertical deflections differences were 1.1 s and 3.5 s for the north component and the east component between HY-2A’s observations and those from EGM2008 and EIGEN-6C4, respectively. This indicates the accuracy of the east component was poorer than that of the north component. In order to clearly demonstrate contribution of HY-2A’s observations to gravity disturbances, reference models and the commonly used remove-restore method were not adopted in this study. Therefore, the results can be seen as ‘pure’ signals from HY-2A. Assuming the values from EGM2008 were the true values, the accuracy of the gravity disturbances was about −1.1 mGal in terms of mean value of the errors and 8.0 mGal in terms of the STD. This shows systematic errors if only HY-2A observations were used. An index of STD showed that the accuracy of HY-2A was close to the theoretical accuracy according to the vertical deflection products. To verify whether the systematic errors of gravity field were from the long wavelengths, the long-wavelength parts of HY-2A’s gravity disturbance with wavelengths larger than 500 km were replaced by those from EGM2008. By comparing with ‘pure’ HY-2A version of gravity disturbance, the accuracy of the new version products was improved largely. The systematic errors no longer existed and the error STD was reduced to 6.1 mGal.
Evaluation of a Soviet-Era Gravimetric Survey Using Absolute Gravity Measurements and Global Gravity Models: Toward the First National Geoid of Kazakhstan
Determining a high-precision national geoid is a fundamental step in modernizing Kazakhstan’s vertical reference system. However, the country’s vast territory, complex topography, and limited coverage of modern terrestrial and airborne gravimetric surveys present significant challenges. In this context, Soviet-era gravimetric maps at a 1:200,000 scale remain the only consistent nationwide data source, yet their reliability has not previously been rigorously assessed within modern gravity standards. This study presents the first comprehensive validation of Soviet-era gravimetric surveys using two independent approaches. The first approach is about the comparison of gravity anomalies with the global geopotential models EGM2008, EIGEN-6C4 and XGM2019e_2159. The second approach is about the direct evaluation against absolute gravity measurements from the newly established Qazaqstan Gravity Reference Frame (QazGRF). The analysis demonstrates that, after applying systematic corrections, the Soviet-era gravimetric survey retains high information content. The mean discrepancy with QazGRF measurements is 0.7 mGal with a standard deviation of 2.5 mGal, and more than 90% of the evaluated points deviate by less than ±5 mGal. Larger inconsistencies, up to 20 mGal, are confined to mountainous and geophysically complex regions. In addition, several artifacts inherent to the global models were identified, suggesting that the integration of validated regional gravimetric data can also support future improvements of global gravity models. A key finding was the detection of an artifact in the global models on sheet M43. Its presence was confirmed by comparison with terrestrial gravimetric data and inter-model differences. It was established that the anomaly is caused by inaccuracies in the terrestrial “fill-in” component of the EGM2008 model, which subsequently inherited by later global solutions. The results confirm that Soviet gravimetric maps, once critically re-evaluated and tied to absolute observations, can be effectively integrated with global models. This integration delivers reliable, high-resolution inputs for regional gravity-field modeling. It establishes a robust scientific and practical foundation for constructing the first national geoid of Kazakhstan and for implementing a unified state coordinate and height system. It also helps enhance the accuracy of global geopotential models.
Accurate Height Determination in Uneven Terrains with Integration of Global Navigation Satellite System Technology and Geometric Levelling: A Case Study in Lebanon
The technology for determining a point’s coordinates on the earth’s surface using the global navigation satellite system (GNSS) is becoming the norm along with ground-based methods. In this case, determining coordinates does not cause any particular difficulties. However, to identify normal heights using this technology with a given accuracy, special research is required. The fact is that satellite determinations of geodetic heights (h) over an ellipsoid surface differ from ground-based measurements of normal height (HN) over a quasi-geoid surface by a certain value called quasi-geoid height or height anomaly (ζ). In relation to determining heights of a certain territory, the concept of geoid height (N) is usually operated when dealing with a geoid model. In this work, geodetic and normal heights are determined for five control points in three different regions in Lebanon, where measurements are carried out using GNSS technology and geometric levelling. The obtained quasi-geoid heights are compared with geoid heights derived from the global Earth model EGM2008. The results obtained showed that, in the absence of gravimetric data, the combination of global Earth model data, geometric levelling for selected areas, and satellite determinations allows for the creation of a highly accurate altitude network for mountainous areas.
Comparing geologic structural mapping techniques in tectonically active region of Lake Van using gravity and seismological data
The Van Lake region is situated within the boundary of the collision zone between the Arabian and Eurasian plates, which has resulted in the formation of a variety of geological structures, including faults, volcanoes, and uplifted mountain ranges. A comprehensive understanding of these structures can yield significant information pertaining to the region’s tectonic history, as well as potential tectonic hazards. In the present study, several structural mapping techniques, including lineament detection techniques [Horizontal Gradient Magnitude (HGM), Analytic Signal (AS), and Tilt Angle] and curvature analysis attributes (Differential, Gaussian, Mean, and Shape Index), were analyzed and compared the results obtained using both Earth Gravity Model 2008 (EGM2008) Bouguer gravity and seismological data, with the goal of determining the most effective (suitable) edge detection method in order to gain a better understanding of high-stress regions and areas of potential seismic hazard in the vicinity of Van Lake. It is of great importance to investigate the behavior of faults and the curvatures of structural features within the crust, as they play a significant role in determining the distribution of stress, and subsequently, its impact on surface structures. The results show that HGM and AS are effective in defining fault strikes and trends, while Gaussian curvature attributes can detect lineaments and structural edges. Differential curvature attributes were found to be best suited for complex tectonic regions. The study also reveals a coherent relationship between fold orientation and fault strikes with the regional principal stress direction. The current study has focused on a region characterized by a significant negative anomaly, which appears to be a valley-like fold structure with a highly inclined interlimb angle. This area, referred to as the “silent” zone, is seismically quiet with regard to earthquakes and faults. However, focal mechanism results support the orientation of the interlimb angle fold in the vicinity of this region. The existence of a strong negative anomaly in the eastern part of the study area highlights the requirement for additional geological field observations and seismic surveys to evaluate the potential earthquake hazards. In the course of comparing various structural mapping techniques, it was concluded that the application of second-order vertical derivative of gravity potential is a suggested approach for identifying the edges of causative structures.
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.