Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "EHR-based typology"
Sort by:
Electronic health records identify timely trends in childhood mental health conditions
Background Electronic health records (EHRs) data provide an opportunity to collect patient information rapidly, efficiently and at scale. National collaborative research networks, such as PEDSnet, aggregate EHRs data across institutions, enabling rapid identification of pediatric disease cohorts and generating new knowledge for medical conditions. To date, aggregation of EHR data has had limited applications in advancing our understanding of mental health (MH) conditions, in part due to the limited research in clinical informatics, necessary for the translation of EHR data to child mental health research. Methods In this cohort study, a comprehensive EHR-based typology was developed by an interdisciplinary team, with expertise in informatics and child and adolescent psychiatry, to query aggregated, standardized EHR data for the full spectrum of MH conditions (disorders/symptoms and exposure to adverse childhood experiences (ACEs), across 13 years (2010–2023), from 9 PEDSnet centers. Patients with and without MH disorders/symptoms (without ACEs), were compared by age, gender, race/ethnicity, insurance, and chronic physical conditions. Patients with ACEs alone were compared with those that also had MH disorders/symptoms. Prevalence estimates for patients with 1 + disorder/symptoms and for specific disorders/symptoms and exposure to ACEs were calculated, as well as risk for developing MH disorder/symptoms. Results The EHR study data set included 7,852,081 patients < 21 years of age, of which 52.1% were male. Of this group, 1,552,726 (19.8%), without exposure to ACEs, had a lifetime MH disorders/symptoms, 56.5% being male. Annual prevalence estimates of MH disorders/symptoms (without exposure to ACEs) rose from 10.6% to 2010 to 15.1% in 2023, a 44% relative increase, peaking to 15.4% in 2019, prior to the Covid-19 pandemic. MH categories with the largest increases between 2010 and 2023 were exposure to ACEs (1.7, 95% CI 1.6–1.8), anxiety disorders (2.8, 95% CI 2.8–2.9), eating/feeding disorders (2.1, 95% CI 2.1–2.2), gender dysphoria/sexual dysfunction (43.6, 95% CI 35.8–53.0), and intentional self-harm/suicidality (3.3, 95% CI 3.2–3.5). White youths had the highest rates in most categories, except for disruptive behavior disorders, elimination disorders, psychotic disorders, and standalone symptoms which Black youths had higher rates. Median age of detection was 8.1 years (IQR 3.5–13.5) with all standalone symptoms recorded earlier than the corresponding MH disorder categories. Conclusions These results support EHRs’ capability in capturing the full spectrum of MH disorders/symptoms and exposure to ACEs, identifying the proportion of patients and groups at risk, and detecting trends throughout a 13-year period that included the Covid-19 pandemic. Standardized EHR data, which capture MH conditions is critical for health systems to examine past and current trends for future surveillance. Our publicly available EHR-mental health typology codes can be used in other studies to further advance research in this area.