Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,020,785 result(s) for "ELECTRICAL POWER"
Sort by:
Voltage-Sourced Converters in Power Systems
Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System ApplicationsElectronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studiesThis comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.
Power Quality in Power Systems and Electrical Machines
Power quality of power systems affects all connected electrical and electronic equipment. Power quality is a measure of deviations in voltage and frequency of the particular supply system. In recent years, there has been a considerable increase in nonlinear loads; in particular distributed loads, such as computers, TV monitors and lighting. These draw harmonic currents which, when distorted, have detrimental effects including interference, loss of reliability, increased operating costs, equipment overheating, motor failures, capacitor failure and inaccurate power metering. This subject is pertinent to engineers involved with electric power systems, electronic equipment, computers and manufacturing equipment. This book shows readers to understand the causes and effects of power quality problems such as non-sinusoidal wave shapes, voltage outages, losses due to poor power quality, and origins of single-time events such as voltage dips, voltage reductions and outages, along with techniques to mitigate these problems.
Electric energy : an introduction
\"Along with the standard topics of power electronics and electromechanical conversion, this popular text covers energy resources, power plants, environmental impacts of power generation, power system operation, renewable energy, and electrical safety. Focusing on issues encountered daily in practice, the author includes examples based on real systems and data. Now in color, this third edition offers new and expanded coverage on the failure modes of nuclear power plants, interface and integration issues, stray voltage and impulse shocks, the circuits in wind and solar systems, and smart grid technology\"-- Provided by publisher.
Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems
<p><i>Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems&nbsp;</i>is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.</p> <p>Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.</p> <p>Key features:</p> <ul> <li>Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.</li> <li>Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.</li> <li>Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.</li> <li>Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.</li> <li>A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.</li> </ul> <p>This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.</p> <div>&nbsp;</div>
Electricity markets and power system economics
\"With the theories and rules of electricity markets developing rapidly, it's difficult for beginners to start learning and difficult for those in the field to keep up. Bringing together information previously scattered among various journals and scholarly articles, this book provides a comprehensive overview of the current state of development in the electricity market. It introduces the fundamental principles of power system operation so that even those with a basic understanding can benefit from the book. It includes a series of consistent mathematical models of market operation of power systems, original cases, and MATLAB programming examples with solutions\"-- Provided by publisher.
Comprehensive review of generation and transmission expansion planning
Investment on generation system and transmission network is an important issue in power systems, and investment reversibility closely depends on performing an optimal planning. In this regard, generation expansion planning (GEP) and transmission expansion planning (TEP) have been presented by researchers to manage an optimal planning on generation and transmission systems. In recent years, a large number of research works have been carried out on GEP and TEP. These problems have been investigated with different views, methods, constraints and objectives. The evaluation of researches in these fields and categorising their different aspects are necessary to manage further works. This study presents a comprehensive review of GEP and TEP problems from different aspects and views such as modelling, solving methods, reliability, distributed generation, electricity market, uncertainties, line congestion, reactive power planning, demand-side management and so on. The review results provide a comprehensive background to find out further ideas in these fields.
Power electronics and control techniques for maximum energy harvesting in photovoltaic systems
\"Preface Photovoltaic (PV) systems are nowadays producing a significant amount of the electrical energy used all around the world. The support the PV technology can offer in the next decades, to the rate of growth of the advanced economies as well as of the developing Countries, is very high. The incentives provided at a first stage by the European governments have resulted in the rapid growth of the photovoltaic market and in the increase of the number and quality of products offered by the industries. PV modules by many producers are nowadays commercially available and a number of power electronic systems have been put on the Market for processing the electric power produced by PV systems, especially for grid connected applications. Also the scientific literature concerning PV applications has been characterized by a strong quantitative and qualitative growth in the last decade. A huge number of papers has been written and continues to be published in many journals; moreover, high impact factor scientific journals which are specifically devoted to photovoltaic systems are printed. A significant number of scientific papers is dedicated to the control of the photovoltaic source. A simple search on the Reuters Thomson website reveals that, at the end of May 2012, about 600 papers include the Maximum Power Point Tracking among their keywords. Many authors have contributed to the scientific field of the circuits and systems ensuring the best operation of the photovoltaic generator, but a reference in this field is still lacking. Some books that try to assess the most significant improvements concerning the connection of the photovoltaic systems to the grid have been recently published\"-- Provided by publisher.
Power System Control Under Cascading Failures
<p>OFFERS A COMPREHENSIVE INTRODUCTION TO THE ISSUES OF CONTROL OF POWER SYSTEMS DURING CASCADING OUTAGES AND RESTORATION PROCESS <p><i>Power System Control Under Cascading Failures</i> offers comprehensive coverage of three major topics related to prevention of cascading power outages in a power transmission grid: modelling and analysis, system separation and power system restoration. The book examines modelling and analysis of cascading failures for reliable and efficient simulation and better understanding of important mechanisms, as well as root causes and propagation patterns of failures and power outages. It also covers controlled system separation to mitigate cascading failures addressing key questions such as where, when and how to separate. The text explores optimal system restoration from cascading power outages and blackouts by well&#45;designed milestones, optimised procedures and emerging techniques. <p>The authors &#151; noted experts in the field &#151; include state&#45;of&#45;the&#45;art methods that are illustrated in detail as well as practical examples that show how to use them to address realistic problems and improve current practices. This important resource: <ul> <li>Contains comprehensive coverage of a focused area of cascading power system outages, addressing modelling and analysis, system separation and power system restoration</li> <li>Offers a description of theoretical models to analyse outages, methods to identify control actions to prevent propagation of outages and restore the system</li> <li>Suggests state&#45;of&#45;the&#45;art methods that are illustrated in detail with hands&#45;on examples that address realistic problems to help improve current practices</li> <li>Includes companion website with samples, codes and examples to support the text</li> </ul> <p>Written for postgraduate students, researchers, specialists, planners and operation engineers from industry, <i>Power System Control Under Cascading Failures</i> contains a review of a focused area of cascading power system outages, addresses modelling and analysis, system separation, and power system restoration