Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,825 result(s) for "EPITHELIAL-MESENCHYMAL TRANSITION"
Sort by:
Targeting Epithelial–Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer
Epithelial–mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous EMT-related signaling pathways are involved in drug resistance in cancer cells. Cells undergoing EMT show a feature similar to cancer stem cells (CSCs), such as an increase in drug efflux pumps and anti-apoptotic effects. Therefore, targeting EMT has been considered a novel opportunity to overcome cancer drug resistance. This review describes the mechanism by which EMT contributes to drug resistance in cancer cells and summarizes new advances in research in EMT-associated drug resistance.
Constitutive inflammation and epithelial-mesenchymal transition dictate sensitivity to nivolumab in CONFIRM: a placebo-controlled, randomised phase III trial
Leveraging adaptive tumour immunity to control mesothelioma via immune checkpoint blockade is now a standard therapeutic approach. However, the determinants of sensitivity remain elusive. Low non-synonymous mutation burden and programmed death-ligand 1 expression, an abundance of immunosuppressive immune cell infiltration, and 9p21 deletion should all mitigate responses to therapy. To address this knowledge gap, we conducted a double blind, placebo-controlled, randomized phase III trial of the PD1 inhibitor, nivolumab (ClinicalTrial.gov registration: NCT03063450). After 37.2 months of follow-up, the primary endpoint of progression free-survival, but not overall survival was met. The nivolumab response rate was 10.3%, and related grade 3 or above adverse events occurred in 20.4% versus 7.2% for placebo. Progression-free and overall survival were longer in nivolumab-treated responders versus non-responders. In an exploratory multiomic analysis, blinded whole exome, transcriptome and multiplex immune profiling were used to interrogate R- versus NR-subgroups. Non-synonymous and neoantigen mutation burden were no different between groups, however R-mesotheliomas were infiltrated with activated CD8 + T- and CD19 + B-lymphocytes, organised into tertiary lymphoid structures. B-cell infiltration correlated with pro-inflammatory chemokines including IL24 and CCL19. Conversely, epithelial-mesenchymal transition and mitosis were associated with resistance to nivolumab. These findings illuminate features which can be leveraged to advance precision immunotherapy in this rare cancer setting. The sensitivity of mesothelioma to the treatment of immune checkpoint blockade remains elusive. Here this group reports a double blind, placebo-controlled, randomized phase III trial of PD1 inhibitor (Nivolumab) on 332 patients with relapsed mesothelioma, and to uncover determinants of efficacy.
Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Epithelial‐mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients
Epithelial‐mesenchymal transition (EMT) is a reversible and dynamic process hypothesized to be co‐opted by carcinoma during invasion and metastasis. Yet, there is still no quantitative measure to assess the interplay between EMT and cancer progression. Here, we derived a method for universal EMT scoring from cancer‐specific transcriptomic EMT signatures of ovarian, breast, bladder, lung, colorectal and gastric cancers. We show that EMT scoring exhibits good correlation with previously published, cancer‐specific EMT signatures. This universal and quantitative EMT scoring was used to establish an EMT spectrum across various cancers, with good correlation noted between cell lines and tumours. We show correlations between EMT and poorer disease‐free survival in ovarian and colorectal, but not breast, carcinomas, despite previous notions. Importantly, we found distinct responses between epithelial‐ and mesenchymal‐like ovarian cancers to therapeutic regimes administered with or without paclitaxel in vivo and demonstrated that mesenchymal‐like tumours do not always show resistance to chemotherapy. EMT scoring is thus a promising, versatile tool for the objective and systematic investigation of EMT roles and dynamics in cancer progression, treatment response and survival. Synopsis A novel EMT scoring method reveals that EMT status does not unanimously correlate with poorer overall and disease‐free survival. Different EMTed tumours show distinct responses to certain chemotherapeutics, with the potential to stratify patients by EMT status. A novel scoring method was developed based on transcriptomics to universally estimate and compare the Epithelial‐Mesenchymal Transition (EMT) phenotype across cancer types. A spectrum of EMT was established across more than 15 cancers using this EMT scoring method. Correlations of EMT status with poorer overall‐ and disease‐free survival were not unanimously observed in all cancers. Differential and preferential responses of EMTed tumours to certain chemotherapeutics were observed, suggesting the potential to stratify patients by EMT status. Graphical Abstract A novel EMT scoring method reveals that EMT status does not unanimously correlate with poorer overall and disease‐free survival. Different EMTed tumours show distinct responses to certain chemotherapeutics, with the potential to stratify patients by EMT status.
Guidelines and definitions for research on epithelial–mesenchymal transition
Epithelial–mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by ‘the EMT International Association’ (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.In this Consensus Statement, the authors (on behalf of the EMT International Association) propose guidelines to define epithelial–mesenchymal transition, its phenotypic plasticity and the associated multiple intermediate epithelial–mesenchymal cell states. Clarification of nomenclature and definitions will help reduce misinterpretation of research data generated in different experimental model systems and promote cross-disciplinary collaboration.
Epithelial–mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis
Many cells possess epithelial–mesenchymal plasticity (EMP), which allows them to shift reversibly between adherent, static and more detached, migratory states. These changes in cell behaviour are driven by the programmes of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET), both of which play vital roles during normal development and tissue homeostasis. However, the aberrant activation of these processes can also drive distinct stages of cancer progression, including tumour invasiveness, cell dissemination and metastatic colonization and outgrowth. This review examines emerging common themes underlying EMP during tissue morphogenesis and malignant progression, such as the context dependence of EMT transcription factors, a central role for partial EMTs and the nonlinear relationship between EMT and MET. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.
EMT and MET: necessary or permissive for metastasis?
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view of single‐cell dissemination. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
RHOJ controls EMT-associated resistance to chemotherapy
The resistance of cancer cells to therapy is responsible for the death of most patients with cancer 1 . Epithelial-to-mesenchymal transition (EMT) has been associated with resistance to therapy in different cancer cells 2 , 3 . However, the mechanisms by which EMT mediates resistance to therapy remain poorly understood. Here, using a mouse model of skin squamous cell carcinoma undergoing spontaneous EMT during tumorigenesis, we found that EMT tumour cells are highly resistant to a wide range of anti-cancer therapies both in vivo and in vitro. Using gain and loss of function studies in vitro and in vivo, we found that RHOJ—a small GTPase that is preferentially expressed in EMT cancer cells—controls resistance to therapy. Using genome-wide transcriptomic and proteomic profiling, we found that RHOJ regulates EMT-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA-damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy. RHOJ interacts with proteins that regulate nuclear actin, and inhibition of actin polymerization sensitizes EMT tumour cells to chemotherapy-induced cell death in a RHOJ-dependent manner. Together, our study uncovers the role and the mechanisms through which RHOJ acts as a key regulator of EMT-associated resistance to chemotherapy. RHOJ regulates epithelial-to-mesenchymal-transition-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy.
Astragaloside IV modulates TGF‐β1‐dependent epithelial‐mesenchymal transition in bleomycin‐induced pulmonary fibrosis
Epithelial‐mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti‐fibrotic property in bleomycin (BLM)‐induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM‐induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM‐induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM‐induced EMT. Intriguing, transforming growth factor‐β1 (TGF‐β1) was found to be up‐regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF‐β1 and activated FOXO3a in lung tissues. TGF‐β1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF‐β1‐activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down‐regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF‐β1‐induced EMT. Moreover, ASV treatment, similar with the TGF‐β1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF‐β1/PI3K/Akt‐induced FOXO3a hyperphosphorylation and down‐regulation to reverse EMT during the progression of fibrosis.
The epigenetics of epithelial-mesenchymal plasticity in cancer
Epithelial-mesenchymal transitions (EMTs) are a key requirement for cancer cells to metastasize and colonize in a new environment. Epithelial-mesenchymal plasticity is mediated by master transcription factors and is also subject to complex epigenetic regulation. This Review outlines our current understanding of the interactions between EMT-inducing transcription factors and epigenetic modulators during cancer progression and the therapeutic implications of exploiting this intricate regulatory process. During the course of malignant cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, the extremes of which are defined by the expression of epithelial and mesenchymal phenotypes. This plasticity is enabled by underlying shifts in epigenetic regulation. A small cohort of pleiotropically acting transcription factors is widely recognized to effect these shifts by controlling the expression of a constituency of key target genes. These master regulators depend on complex epigenetic regulatory mechanisms, notably the induction of changes in the modifications of chromatin-associated histones, in order to achieve the widespread changes in gene expression observed during epithelial-mesenchymal transitions (EMTs). These associations indicate that an understanding of the functional interactions between such EMT-inducing transcription factors and the modulators of chromatin configuration will provide crucial insights into the fundamental mechanisms underlying cancer progression and may, in the longer term, generate new diagnostic and therapeutic modalities for treating high-grade malignancies.