Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
318 result(s) for "Early Ambulation - methods"
Sort by:
Early Active Mobilization during Mechanical Ventilation in the ICU
Intensive care unit (ICU)-acquired weakness often develops in patients who are undergoing invasive mechanical ventilation. Early active mobilization may mitigate ICU-acquired weakness, increase survival, and reduce disability. We randomly assigned 750 adult patients in the ICU who were undergoing invasive mechanical ventilation to receive increased early mobilization (sedation minimization and daily physiotherapy) or usual care (the level of mobilization that was normally provided in each ICU). The primary outcome was the number of days that the patients were alive and out of the hospital at 180 days after randomization. The median number of days that patients were alive and out of the hospital was 143 (interquartile range, 21 to 161) in the early-mobilization group and 145 days (interquartile range, 51 to 164) in the usual-care group (absolute difference, -2.0 days; 95% confidence interval [CI], -10 to 6; P = 0.62). The mean (±SD) daily duration of active mobilization was 20.8±14.6 minutes and 8.8±9.0 minutes in the two groups, respectively (difference, 12.0 minutes per day; 95% CI, 10.4 to 13.6). A total of 77% of the patients in both groups were able to stand by a median interval of 3 days and 5 days, respectively (difference, -2 days; 95% CI, -3.4 to -0.6). By day 180, death had occurred in 22.5% of the patients in the early-mobilization group and in 19.5% of those in the usual-care group (odds ratio, 1.15; 95% CI, 0.81 to 1.65). Among survivors, quality of life, activities of daily living, disability, cognitive function, and psychological function were similar in the two groups. Serious adverse events were reported in 7 patients in the early-mobilization group and in 1 patient in the usual-care group. Adverse events that were potentially due to mobilization (arrhythmias, altered blood pressure, and desaturation) were reported in 34 of 371 patients (9.2%) in the early-mobilization group and in 15 of 370 patients (4.1%) in the usual-care group (P = 0.005). Among adults undergoing mechanical ventilation in the ICU, an increase in early active mobilization did not result in a significantly greater number of days that patients were alive and out of the hospital than did the usual level of mobilization in the ICU. The intervention was associated with increased adverse events. (Funded by the National Health and Medical Research Council of Australia and the Health Research Council of New Zealand; TEAM ClinicalTrials.gov number, NCT03133377.).
Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial
Immobilisation predicts adverse outcomes in patients in the surgical intensive care unit (SICU). Attempts to mobilise critically ill patients early after surgery are frequently restricted, but we tested whether early mobilisation leads to improved mobility, decreased SICU length of stay, and increased functional independence of patients at hospital discharge. We did a multicentre, international, parallel-group, assessor-blinded, randomised controlled trial in SICUs of five university hospitals in Austria (n=1), Germany (n=1), and the USA (n=3). Eligible patients (aged 18 years or older, who had been mechanically ventilated for <48 h, and were expected to require mechanical ventilation for ≥24 h) were randomly assigned (1:1) by use of a stratified block randomisation via restricted web platform to standard of care (control) or early, goal-directed mobilisation using an inter-professional approach of closed-loop communication and the SICU optimal mobilisation score (SOMS) algorithm (intervention), which describes patients’ mobilisation capacity on a numerical rating scale ranging from 0 (no mobilisation) to 4 (ambulation). We had three main outcomes hierarchically tested in a prespecified order: the mean SOMS level patients achieved during their SICU stay (primary outcome), and patient's length of stay on SICU and the mini-modified functional independence measure score (mmFIM) at hospital discharge (both secondary outcomes). This trial is registered with ClinicalTrials.gov (NCT01363102). Between July 1, 2011, and Nov 4, 2015, we randomly assigned 200 patients to receive standard treatment (control; n=96) or intervention (n=104). Intention-to-treat analysis showed that the intervention improved the mobilisation level (mean achieved SOMS 2·2 [SD 1·0] in intervention group vs 1·5 [0·8] in control group, p<0·0001), decreased SICU length of stay (mean 7 days [SD 5–12] in intervention group vs 10 days [6–15] in control group, p=0·0054), and improved functional mobility at hospital discharge (mmFIM score 8 [4–8] in intervention group vs 5 [2–8] in control group, p=0·0002). More adverse events were reported in the intervention group (25 cases [2·8%]) than in the control group (ten cases [0·8%]); no serious adverse events were observed. Before hospital discharge 25 patients died (17 [16%] in the intervention group, eight [8%] in the control group). 3 months after hospital discharge 36 patients died (21 [22%] in the intervention group, 15 [17%] in the control group). Early, goal-directed mobilisation improved patient mobilisation throughout SICU admission, shortened patient length of stay in the SICU, and improved patients’ functional mobility at hospital discharge. Jeffrey and Judy Buzen.
Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial
Early mobilisation after stroke is thought to contribute to the effects of stroke-unit care; however, the intervention is poorly defined and not underpinned by strong evidence. We aimed to compare the effectiveness of frequent, higher dose, very early mobilisation with usual care after stroke. We did this parallel-group, single-blind, randomised controlled trial at 56 acute stroke units in five countries. Patients (aged ≥18 years) with ischaemic or haemorrhagic stroke, first or recurrent, who met physiological criteria were randomly assigned (1:1), via a web-based computer generated block randomisation procedure (block size of six), to receive usual stroke-unit care alone or very early mobilisation in addition to usual care. Treatment with recombinant tissue plasminogen activator was allowed. Randomisation was stratified by study site and stroke severity. Patients, outcome assessors, and investigators involved in trial and data management were masked to treatment allocation. The primary outcome was a favourable outcome 3 months after stroke, defined as a modified Rankin Scale score of 0–2. We did analysis on an intention-to-treat basis. The trial is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12606000185561. Between July 18, 2006, and Oct 16, 2014, we randomly assigned 2104 patients to receive either very early mobilisation (n=1054) or usual care (n=1050); 2083 (99%) patients were included in the 3 month follow-up assessment. 965 (92%) patients were mobilised within 24 h in the very early mobilisation group compared with 623 (59%) patients in the usual care group. Fewer patients in the very early mobilisation group had a favourable outcome than those in the usual care group (n=480 [46%] vs n=525 [50%]; adjusted odds ratio [OR] 0·73, 95% CI 0·59–0·90; p=0·004). 88 (8%) patients died in the very early mobilisation group compared with 72 (7%) patients in the usual care group (OR 1·34, 95% CI 0·93–1·93, p=0·113). 201 (19%) patients in the very early mobilisation group and 208 (20%) of those in the usual care group had a non-fatal serious adverse event, with no reduction in immobility-related complications with very early mobilisation. First mobilisation took place within 24 h for most patients in this trial. The higher dose, very early mobilisation protocol was associated with a reduction in the odds of a favourable outcome at 3 months. Early mobilisation after stroke is recommended in many clinical practice guidelines worldwide, and our findings should affect clinical practice by refining present guidelines; however, clinical recommendations should be informed by future analyses of dose–response associations. National Health and Medical Research Council, Singapore Health, Chest Heart and Stroke Scotland, Northern Ireland Chest Heart and Stroke, UK Stroke Association, National Institute of Health Research.
Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study
Introduction The aim of this study was to investigate current mobilization practice, strength at ICU discharge and functional recovery at 6 months among mechanically ventilated ICU patients. Method This was a prospective, multi-centre, cohort study conducted in twelve ICUs in Australia and New Zealand. Patients were previously functionally independent and expected to be ventilated for >48 hours. We measured mobilization during invasive ventilation, sedation depth using the Richmond Agitation and Sedation Scale (RASS), co-interventions, duration of mechanical ventilation, ICU-acquired weakness (ICUAW) at ICU discharge, mortality at day 90, and 6-month functional recovery including return to work. Results We studied 192 patients (mean age 58.1 ± 15.8 years; mean Acute Physiology and Chronic Health Evaluation (APACHE) (IQR) II score, 18.0 (14 to 24)). Mortality at day 90 was 26.6% (51/192). Over 1,351 study days, we collected information during 1,288 planned early mobilization episodes in patients on mechanical ventilation for the first 14 days or until extubation (whichever occurred first). We recorded the highest level of early mobilization. Despite the presence of dedicated physical therapy staff, no mobilization occurred in 1,079 (84%) of these episodes. Where mobilization occurred, the maximum levels of mobilization were exercises in bed (N = 94, 7%), standing at the bed side (N = 11, 0.9%) or walking (N = 26, 2%). On day three, all patients who were mobilized were mechanically ventilated via an endotracheal tube (N = 10), whereas by day five 50% of the patients mobilized were mechanically ventilated via a tracheostomy tube (N = 18). In 94 of the 156 ICU survivors, strength was assessed at ICU discharge and 48 (52%) had ICU-acquired weakness (Medical Research Council Manual Muscle Test Sum Score (MRC-SS) score <48/60). The MRC-SS score was higher in those patients who mobilized while mechanically ventilated (50.0 ± 11.2 versus 42.0 ± 10.8, P  = 0.003). Patients who survived to ICU discharge but who had died by day 90 had a mean MRC score of 28.9 ± 13.2 compared with 44.9 ± 11.4 for day-90 survivors ( P <0.0001). Conclusions Early mobilization of patients receiving mechanical ventilation was uncommon. More than 50% of patients discharged from the ICU had developed ICU-acquired weakness, which was associated with death between ICU discharge and day-90. Clinical trial registration ClinicalTrials.gov NCT01674608 . Registered 14 August 2012.
Systematic early versus late mobilization or standard early mobilization in mechanically ventilated adult ICU patients: systematic review and meta-analysis
Background This systematic review and meta-analysis aimed to determine the effectiveness of systematic early mobilization in improving muscle strength and physical function in mechanically ventilated intensive care unit (ICU) patients. Methods We conducted a two-stage systematic literature search in MEDLINE, EMBASE and the Cochrane Library until January 2019 for randomized controlled trials (RCTs) examining the effects of early mobilization initiated within 7 days after ICU admission compared with late mobilization, standard early mobilization or no mobilization. Priority outcomes were Medical Research Council Sum Score (MRC-SS), incidence of ICU-acquired weakness (ICUAW), 6-min walk test (6MWT), proportion of patients reaching independence, time needed until walking, SF-36 Physical Function Domain Score (PFS) and SF-36 Physical Health Component Score (PCS). Meta-analysis was conducted where sufficient comparable evidence was available. We evaluated the certainty of evidence according to the GRADE approach. Results We identified 12 eligible RCTs contributing data from 1304 participants. Two RCTs were categorized as comparing systematic early with late mobilization, nine with standard early mobilization and one with no mobilization. We found evidence for a benefit of systematic early mobilization compared to late mobilization for SF-36 PFS (MD 12.3; 95% CI 3.9–20.8) and PCS (MD 3.4; 95% CI 0.01–6.8), as well as on the proportion of patients reaching independence and the time needed to walking, but not for incidence of ICUAW (RR 0.62; 95% CI 0.38–1.03) or MRC-SS. For systematic early compared to standard early mobilization, we found no statistically significant benefit on MRC-SS (MD 5.8; 95% CI − 1.4 to 13.0), incidence of ICUAW (RR 0.90; 95% CI 0.63–1.27), SF-36 PFS (MD 8.1; 95% CI − 15.3 to 31.4) or PCS (MD − 2.4; 95% CI − 6.1 to 1.3) or other priority outcomes except for change in 6MWT from baseline. Generally, effects appeared stronger for systematic early compared to late mobilization than to standard early mobilization. We judged the certainty of evidence for all outcomes as very low to low. Conclusion The evidence regarding a benefit of systematic early mobilization remained inconclusive. However, our findings indicate that the larger the difference in the timing between the intervention and the comparator, the more likely an RCT is to find a benefit for early mobilization. Study Registration : PROSPERO (CRD42019122555).
Guideline on positioning and early mobilisation in the critically ill by an expert panel
A scientific panel was created consisting of 23 interdisciplinary and interprofessional experts in intensive care medicine, physiotherapy, nursing care, surgery, rehabilitative medicine, and pneumology delegated from scientific societies together with a patient representative and a delegate from the Association of the Scientific Medical Societies who advised methodological implementation. The guideline was created according to the German Association of the Scientific Medical Societies (AWMF), based on The Appraisal of Guidelines for Research and Evaluation (AGREE) II. The topics of (early) mobilisation, neuromuscular electrical stimulation, assist devices for mobilisation, and positioning, including prone positioning, were identified as areas to be addressed and assigned to specialist expert groups, taking conflicts of interest into account. The panel formulated PICO questions (addressing the population, intervention, comparison or control group as well as the resulting outcomes), conducted a systematic literature review with abstract screening and full-text analysis and created summary tables. This was followed by grading the evidence according to the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence and a risk of bias assessment. The recommendations were finalized according to GRADE and voted using an online Delphi process followed by a final hybrid consensus conference. The German long version of the guideline was approved by the professional associations. For this English version an update of the systematic review was conducted until April 2024 and recommendation adapted based on new evidence in systematic reviews and randomized controlled trials. In total, 46 recommendations were developed and research gaps addressed.
Assessing the impact of early progressive mobilization on moderate-to-severe traumatic brain injury: a randomized controlled trial
Introduction Traumatic brain injury (TBI) is a major cause of neurodisability worldwide, with notably high disability rates among moderately severe TBI cases. Extensive previous research emphasizes the critical need for early initiation of rehabilitation interventions for these cases. However, the optimal timing and methodology of early mobilization in TBI remain to be conclusively determined. Therefore, we explored the impact of early progressive mobilization (EPM) protocols on the functional outcomes of ICU-admitted patients with moderate to severe TBI. Methods This randomized controlled trial was conducted at a trauma ICU of a medical center; 65 patients were randomly assigned to either the EPM group or the early progressive upright positioning (EPUP) group. The EPM group received early out-of-bed mobilization therapy within seven days after injury, while the EPUP group underwent early in-bed upright position rehabilitation. The primary outcome was the Perme ICU Mobility Score and secondary outcomes included Functional Independence Measure motor domain (FIM-motor) score, phase angle (PhA), skeletal muscle index (SMI), the length of stay in the intensive care unit (ICU), and duration of ventilation. Results Among 65 randomized patients, 33 were assigned to EPM and 32 to EPUP group. The EPM group significantly outperformed the EPUP group in the Perme ICU Mobility and FIM-motor scores, with a notably shorter ICU stay by 5.9 days ( p  < 0.001) and ventilation duration by 6.7 days ( p  = 0.001). However, no significant differences were observed in PhAs. Conclusion The early progressive out-of-bed mobilization protocol can enhance mobility and functional outcomes and shorten ICU stay and ventilation duration of patients with moderate-to-severe TBI. Our study’s results support further investigation of EPM through larger, randomized clinical trials. Clinical trial registration ClinicalTrials.gov NCT04810273 . Registered 13 March 2021.
The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review
Purpose Early active mobilisation and rehabilitation in the intensive care unit (ICU) is being used to prevent the long-term functional consequences of critical illness. This review aimed to determine the effect of active mobilisation and rehabilitation in the ICU on mortality, function, mobility, muscle strength, quality of life, days alive and out of hospital to 180 days, ICU and hospital lengths of stay, duration of mechanical ventilation and discharge destination, linking outcomes with the World Health Organization International Classification of Function Framework. Methods A PRISMA checklist-guided systematic review and meta-analysis of randomised and controlled clinical trials. Results Fourteen studies of varying quality including a total of 1753 patients were reviewed. Active mobilisation and rehabilitation had no impact on short- or long-term mortality ( p  > 0.05). Meta-analysis showed that active mobilisation and rehabilitation led to greater muscle strength (body function) at ICU discharge as measured using the Medical Research Council Sum Score (mean difference 8.62 points, 95% confidence interval (CI) 1.39–15.86), greater probability of walking without assistance (activity limitation) at hospital discharge (odds ratio 2.13, 95% CI 1.19–3.83), and more days alive and out of hospital to day 180 (participation restriction) (mean difference 9.69, 95% CI 1.7–17.66). There were no consistent effects on function, quality of life, ICU or hospital length of stay, duration of mechanical ventilation or discharge destination. Conclusion Active mobilisation and rehabilitation in the ICU has no impact on short- and long-term mortality, but may improve mobility status, muscle strength and days alive and out of hospital to 180 days. Registration of protocol number CRD42015029836.
Barriers and Strategies for Early Mobilization of Patients in Intensive Care Units
Early mobilization of patients in the intensive care unit (ICU) is safe, feasible, and beneficial. However, implementation of early mobility as part of routine clinical care can be challenging. The objective of this review is to identify barriers to early mobilization and discuss strategies to overcome such barriers. Based on a literature search, we synthesize data from 40 studies reporting 28 unique barriers to early mobility, of which 14 (50%) were patient-related, 5 (18%) structural, 5 (18%) ICU cultural, and 4 (14%) process-related barriers. These barriers varied across ICUs and within disciplines, depending on the ICU patient population, setting, attitude, and ICU culture. To overcome the identified barriers, over 70 strategies were reported and are synthesized in this review, including: implementation of safety guidelines; use of mobility protocols; interprofessional training, education, and rounds; and involvement of physician champions. Systematic efforts to change ICU culture to prioritize early mobilization using an interprofessional approach and multiple targeted strategies are important components of successfully implementing early mobility in clinical practice.
Association of Wearable Activity Monitors With Assessment of Daily Ambulation and Length of Stay Among Patients Undergoing Major Surgery
Early postoperative ambulation is vital to minimizing length of stay (LOS), but few hospitals objectively measure ambulation to predict outcomes. Wearable activity monitors have the potential to transform assessment of postoperative ambulation, but key implementation data, including whether digitally monitored step count can identify patients at risk for poor efficiency outcomes, are lacking. To define the distribution of digitally measured daily step counts after major inpatient surgical procedures, to assess the accuracy of physician assessment and ordering of ambulation, and to quantify the association of digitally measured step count with LOS. Prospective cohort study at Cedars-Sinai Medical Center, an urban tertiary referral center. Participants were patients undergoing 8 inpatient operations (lung lobectomy, gastric bypass, hip replacement, robotic cystectomy, open colectomy, abdominal hysterectomy, sleeve gastrectomy, and laparoscopic colectomy) from July 11, 2016, to August 30, 2017. Use of activity monitors to measure daily postoperative step count. Operation-specific daily step count, daily step count by physician orders and assessment, and a prolonged LOS (>70th percentile for each operation). Among 100 patients (53% female), the mean (SD) age was 53 (18) years, and the median LOS was 4 days (interquartile range, 3-6 days). There was a statistically significant increase in daily step count with successive postoperative days in aggregate (r = 0.55; 95% bootstrapped CI, 0.47-0.62; P < .001) and across individual operations. Ninety-five percent (356 of 373) of daily ambulation orders were \"ambulate with assistance,\" although daily step counts ranged from 0 to 7698 steps (0-5.5 km) under this order. Physician estimation of ambulation was predictive of the median step count (r = 0.66; 95% bootstrapped CI, 0.59-0.72; P < .001), although there was substantial variation within each assessment category. For example, daily step counts ranged from 0 to 1803 steps (0-1.3 km) in the \"out of bed to chair\" category. Higher step count on postoperative day 1 was associated with lower odds of prolonged LOS from 0 to 1000 steps (odds ratio [OR], 0.63; 95% CI, 0.45-0.84; P = .003), with no further decrease in odds after 1000 steps (OR, 0.99; 95% CI, 0.75-1.30; P = .80). In this study, digitally measured step count up to 1000 steps on postoperative day 1 was associated with lower probability of a prolonged LOS. Wearable activity monitors improved the accuracy of assessment of daily step count over the current standard of care, providing an opportunity to identify patients at risk for poor efficiency outcomes.