Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
220 result(s) for "Early Growth Response Protein 2 - genetics"
Sort by:
Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite
Olivier Delattre and colleagues show that a Ewing sarcoma susceptibility variant at 10q21.3 influences EGR2 expression by altering the activity of an enhancer bound by EWSR1-FLI1. They further show that EGR2 knockdown inhibits growth of Ewing sarcoma cells in vitro and induces complete regression of xenografts in vivo , establishing a critical role for EGR2 in Ewing sarcomagenesis. Deciphering the ways in which somatic mutations and germline susceptibility variants cooperate to promote cancer is challenging. Ewing sarcoma is characterized by fusions between EWSR1 and members of the ETS gene family, usually EWSR1 - FLI1 , leading to the generation of oncogenic transcription factors that bind DNA at GGAA motifs 1 , 2 , 3 . A recent genome-wide association study 4 identified susceptibility variants near EGR2 . Here we found that EGR2 knockdown inhibited proliferation, clonogenicity and spheroidal growth in vitro and induced regression of Ewing sarcoma xenografts. Targeted germline deep sequencing of the EGR2 locus in affected subjects and controls identified 291 Ewing-associated SNPs. At rs79965208, the A risk allele connected adjacent GGAA repeats by converting an interspaced GGA T motif into a GGA A motif, thereby increasing the number of consecutive GGAA motifs and thus the EWSR1-FLI1–dependent enhancer activity of this sequence, with epigenetic characteristics of an active regulatory element. EWSR1-FLI1 preferentially bound to the A risk allele, which increased global and allele-specific EGR2 expression. Collectively, our findings establish cooperation between a dominant oncogene and a susceptibility variant that regulates a major driver of Ewing sarcomagenesis.
Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling
The mechanisms by which TCR signaling 'instructs' thymic lineages remain unclear. Bendelac and colleagues show that the TCR-induced transcription factor Egr2 specifies the early and late stages of differentiation into the natural killer T cell lineage. Interactions driven by the T cell antigen receptor (TCR) determine the lineage fate of CD4 + CD8 + thymocytes, but the molecular mechanisms that induce the lineage-determining transcription factors are unknown. Here we found that TCR-induced transcription factors Egr2 and Egr1 had higher and more-prolonged expression in precursors of the natural killer T (NKT) than in cells of conventional lineages. Chromatin immunoprecipitation followed by deep sequencing showed that Egr2 directly bound and activated the promoter of Zbtb16 , which encodes the NKT lineage–specific transcription factor PLZF. Egr2 also bound the promoter of Il2rb , which encodes the interleukin 2 (IL-2) receptor β-chain, and controlled the responsiveness to IL-15, which signals the terminal differentiation of the NKT lineage. Thus, we propose that persistent higher expression of Egr2 specifies the early and late stages of NKT lineage differentiation, providing a discriminating mechanism that enables TCR signaling to 'instruct' a thymic lineage.
The Transcription Factors Sox10 and Myrf Define an Essential Regulatory Network Module in Differentiating Oligodendrocytes
Myelin is essential for rapid saltatory conduction and is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In both cell types the transcription factor Sox10 is an essential component of the myelin-specific regulatory network. Here we identify Myrf as an oligodendrocyte-specific target of Sox10 and map a Sox10 responsive enhancer to an evolutionarily conserved element in intron 1 of the Myrf gene. Once induced, Myrf cooperates with Sox10 to implement the myelination program as evident from the physical interaction between both proteins and the synergistic activation of several myelin-specific genes. This is strongly reminiscent of the situation in Schwann cells where Sox10 first induces and then cooperates with Krox20 during myelination. Our analyses indicate that the regulatory network for myelination in oligodendrocytes is organized along similar general principles as the one in Schwann cells, but is differentially implemented.
TCR signal strength controls thymic differentiation of iNKT cell subsets
During development in the thymus, invariant natural killer T (iNKT) cells commit to one of three major functionally different subsets, iNKT1, iNKT2, and iNKT17. Here, we show that T cell antigen receptor (TCR) signal strength governs the development of iNKT cell subsets, with strong signaling promoting iNKT2 and iNKT17 development. Altering TCR diversity or signaling diminishes iNKT2 and iNKT17 cell subset development in a cell-intrinsic manner. Decreased TCR signaling affects the persistence of Egr2 expression and the upregulation of PLZF. By genome-wide comparison of chromatin accessibility, we identify a subset of iNKT2-specific regulatory elements containing NFAT and Egr binding motifs that is less accessible in iNKT2 cells that develop from reduced TCR signaling. These data suggest that variable TCR signaling modulates regulatory element activity at NFAT and Egr binding sites exerting a determinative influence on the dynamics of gene enhancer accessibility and the developmental fate of iNKT cells. Invariant natural killer T (iNKT) cells can be subsetted by their cytokine profiles, but how they develop in the thymus is unclear. Here the authors show, by analysing mice carrying mutant Zap70 genes, that T cell receptor signaling strength induces epigenetic changes of genes to modulate iNKT lineages.
Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration
The peripheral nervous system (PNS) regenerates after injury. However, regeneration is often compromised in the case of large lesions, and the speed of axon reconnection to their target is critical for successful functional recovery. After injury, mature Schwann cells (SCs) convert into repair cells that foster axonal regrowth, and redifferentiate to rebuild myelin. These processes require the regulation of several transcription factors, but the driving mechanisms remain partially understood. Here we identify an early response to nerve injury controlled by histone deacetylase 2 (HDAC2), which coordinates the action of other chromatin-remodelling enzymes to induce the upregulation of Oct6, a key transcription factor for SC development. Inactivating this mechanism using mouse genetics allows earlier conversion into repair cells and leads to faster axonal regrowth, but impairs remyelination. Consistently, short-term HDAC1/2 inhibitor treatment early after lesion accelerates functional recovery and enhances regeneration, thereby identifying a new therapeutic strategy to improve PNS regeneration after lesion. Brügger et al . identify part of the molecular machinery that controls Schwann cell development after peripheral nerve injury. Inhibiting HDAC1/2 early after injury enhances nerve regeneration and promotes functional recovery.
Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by multiorgan inflammation induced by autoantibodies. Early growth response gene 2 (Egr2), a transcription factor essential for T-cell anergy induction, controls systemic autoimmunity in mice and humans. We have previously identified a subpopulation of CD4⁺ regulatory T cells, CD4⁺CD25⁻LAG3⁺ cells, that characteristically express both Egr2 and LAG3 and control mice model of lupus via TGF-β3 production. However, due to the mild phenotype of lymphocyte-specific Egr2-deficient mice, the presence of an additional regulator has been speculated. Here, we show that Egr2 and Egr3 expressed in T cells cooperatively prevent humoral immune responses by supporting TGF-β3 secretion. T cell-specific Egr2/Egr3 double-deficient (Egr2/3DKO) mice spontaneously developed an early onset lupus-like disease that was more severe than in T cell-specific Egr2-deficient mice. In accordance with the observation that CD4⁺CD25⁻LAG3⁺ cells from Egr2/3DKO mice completely lost the capacity to produce TGF-β3, the excessive germinal center reaction in Egr2/3DKO mice was suppressed by the adoptive transfer of WT CD4⁺CD25⁻LAG3⁺ cells or treatment with a TGF-β3–expressing vector. Intriguingly, latent TGF-β binding protein (Ltbp)3 expression maintained by Egr2 and Egr3 was required for TGF-β3 production from CD4⁺CD25⁻LAG3⁺ cells. Because Egr2 and Egr3 did not demonstrate cell intrinsic suppression of the development of follicular helper T cells, Egr2- and Egr3-dependent TGF-β3 production by CD4⁺CD25⁻LAG3⁺ cells is critical for controlling excessive B-cell responses. The unique attributes of Egr2/Egr3 in T cells may provide an opportunity for developing novel therapeutics for autoantibody-mediated diseases including SLE.
Egr-1 promotes the proliferation and migration of vascular smooth muscle cells by transcriptionally activating Egr-2 in arteriovenous fistulas
Arteriovenous fistulas (AVFs) are preferred access points for hemodialysis. The present study aimed to investigate the function of early growth response-1 (Egr-1) in the proliferation and migration of smooth muscle cells (SMCs) and assess its potential as a new therapeutic target for AVF treatment. A comprehensive analysis combining public data-source mining, human tissue collection, animal studies, cell culture experiments and various molecular biology techniques was conducted. The public dataset GSE119296 was used for immunohistochemical analyses of human AVF stenosis samples. SMC-specific Egr-1 knockout mice and various in vitro assays on primary rat vascular SMCs were used to evaluate the effect of Egr-1 on the functional capacity of SMCs. RNA sequencing and chromatin immunoprecipitation sequencing was performed. Egr-1 was upregulated in human AVF stenosis samples and cultured SMCs. Knockout of Egr-1 in mice mitigated AVF outflow tract stenosis, improved flow dynamics and diminished neointima formation. In vitro, Egr-1 ablation reduced SMC proliferation and migration; Egr-1 transcriptionally activated Egr-2. Increased Egr-1 expression facilitated SMC proliferation and migration through Egr-2 regulation, contributing to AVF stenosis. Consequently, targeting Egr-1 may offer a novel therapeutic approach for managing AVF intimal hyperplasia and improving AVF patency and function in patients with end-stage renal disease.
G Protein-Coupled Receptor Is Essential for Schwann Cells to Initiate Myelination
The myelin sheath allows axons to conduct action potentials rapidly in the vertebrate nervous system. Axonal signals activate expression of specific transcription factors, including Oct6 and Krox20, that initiate myelination in Schwann cells. Elevation of cyclic adenosine monophosphate (cAMP) can mimic axonal contact in vitro, but the mechanisms that regulate cAMP levels in vivo are unknown. Using mutational analysis in zebrafish, we found that the G protein-coupled receptor Gpr126 is required autonomously in Schwann cells for myelination. In gpr126 mutants, Schwann cells failed to express oct6 and krox20 and were arrested at the promyelinating stage. Elevation of cAMP in gpr126 mutants, but not krox20 mutants, could restore myelination. We propose that Gpr126 drives the differentiation of promyelinating Schwann cells by elevating cAMP levels, thereby triggering Oct6 expression and myelination.
Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair
By studying a severe neuropathy in mice, Quintes, Brinkmann et al . demonstrate that the nuclear zinc-finger protein Zeb2 (Sip1) is essential for Schwann cell differentiation and myelin synthesis. Since Zeb2 -deficient Schwann cells continuously express repressors of lineage progression, ‘inhibiting the inhibitors’ emerges as a new principle of peripheral myelination control. Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2 -deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an 'inhibitor of inhibitors' in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life.
CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair
Chromatin organization is critical for cell growth, differentiation, and disease development, however, its functions in peripheral myelination and myelin repair remain elusive. In this report, we demonstrate that the CCCTC-binding factor (CTCF), a crucial chromatin organizer, is essential for Schwann cell myelination and myelin regeneration after nerve injury. Inhibition of CTCF or its deletion blocks Schwann cell differentiation at the pro-myelinating stage, whereas overexpression of CTCF promotes the myelination program. We find that CTCF establishes chromatin interaction loops between enhancer and promoter regulatory elements and promotes expression of a key pro-myelinogenic factor EGR2. In addition, CTCF interacts with SUZ12, a component of polycomb-repressive-complex 2 (PRC2), to repress the transcriptional program associated with negative regulation of Schwann cell maturation. Together, our findings reveal a dual role of CTCF-dependent chromatin organization in promoting myelinogenic programs and recruiting chromatin-repressive complexes to block Schwann cell differentiation inhibitors to control peripheral myelination and repair. Myelination by Schwann cells (SC) in the peripheral nervous system is essential for motor function, and dysregulation of SC myelination can lead to various neuropathies. Here the authors describe a critical role of CCCTC-binding factor (CTCF)-dependent chromatin reorganization in peripheral myelination and myelin regeneration after injury.