Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
114,320 result(s) for "Earth science Research."
Sort by:
Applications of Palaeontology
Palaeontology, the scientific study of fossils, has developed from a descriptive science to an analytical science used to interpret relationships between earth and life history. This book provides a comprehensive and thematic treatment of applied palaeontology, covering the use of fossils in the ordering of rocks in time and in space, in biostratigraphy, palaeobiology and sequence stratigraphy. Robert Wynn Jones presents a practical workflow for applied palaeontology, including sample acquisition, preparation and analysis, and interpretation and integration. He then presents numerous case studies that demonstrate the applicability and value of the subject to areas such as petroleum, mineral and coal exploration and exploitation, engineering geology and environmental science. Specialist applications outside of the geosciences (including archaeology, forensic science, medical palynology, entomopalynology and melissopalynology) are also addressed. Abundantly illustrated and referenced, Applications of Palaeontology provides a user-friendly reference for academic researchers and professionals across a range of disciplines and industry settings.
Discovering the cosmos with small spacecraft : the American Explorer Program
Explorer was the original American space program and Explorer 1 its first satellite, launched in 1958. It introduces the launchers (Juno, Thor, etc.), the launch centers, the ground centers and key personalities like James Van Allen who helped develop and run the spacecraft's exciting programs.
New Research Opportunities in the Earth Sciences
The 2001 National Research Council (NRC) report Basic Research Opportunities in Earth Science (BROES) described how basic research in the Earth sciences serves five national imperatives: (1) discovery, use, and conservation of natural resources; (2) characterization and mitigation of natural hazards; (3) geotechnical support of commercial and infrastructure development; (4) stewardship of the environment; and (5) terrestrial surveillance for global security and national defense. This perspective is even more pressing today, and will persist into the future, with ever-growing emphasis. Today's world-with headlines dominated by issues involving fossil fuel and water resources, earthquake and tsunami disasters claiming hundreds of thousands of lives and causing hundreds of billions of dollars in damages, profound environmental changes associated with the evolving climate system, and nuclear weapons proliferation and testing-has many urgent societal issues that need to be informed by sound understanding of the Earth sciences. A national strategy to sustain basic research and training of expertise across the full spectrum of the Earth sciences is motivated by these national imperatives. New Research Opportunities in the Earth Sciences identifies new and emerging research opportunities in the Earth sciences over the next decade, including surface and deep Earth processes and interdisciplinary research with fields such as ocean and atmospheric sciences, biology, engineering, computer science, and social and behavioral sciences. The report also identifies key instrumentation and facilities needed to support these new and emerging research opportunities. The report describes opportunities for increased cooperation in these new and emerging areas between EAR and other government agency programs, industry, and international programs, and suggests new ways that EAR can help train the next generation of Earth scientists, support young investigators, and increase the participation of underrepresented groups in the field.
Water scarcity, livelihoods and food security : research and innovation for development
\"This volume reviews the evolution of ten years' learning and discovery about water scarcity, livelihoods, and food security within the CGIAR Challenge Program on Water and Food. It draws on the experiences of over 100 projects conducted in ten river basins in the developing world. The book describes how the program's design evolved from an emphasis on water scarcity, water productivity, and water access to an emphasis on using water innovations to improve livelihoods and address development challenges in specific river basins. It shows how the research was used to foster change in stakeholder behavior, linking it to improved knowledge, attitudes, and skills, which were fostered by stakeholder participation, innovation, dialogue, and negotiation. The authors describe development challenges, their drivers and their political context, how to address them through technical, institutional, and policy innovations; and the consequences of change at different scales, time frames on equity, resilience, and ecosystem services. Overall, the work represents a major synthesis and landmark publication for all concerned with water resource management and sustainable development\"-- Provided by publisher.
Earth Science and Applications from Space
Understanding the effects of natural and human-induced changes on the global environment and their implications requires a foundation of integrated observations of land, sea, air and space, on which to build credible information products, forecast models, and other tools for making informed decisions. The 2007 National Research Council report on decadal survey called for a renewal of the national commitment to a program of Earth observations in which attention to securing practical benefits for humankind plays an equal role with the quest to acquire new knowledge about the Earth system. NASA responded favorably and aggressively to this survey, embracing its overall recommendations for Earth observations, missions, technology investments, and priorities for the underlying science. As a result, the science and applications communities have made significant progress over the past 5 years. However, the Committee on Assessment of NASA's Earth Science Program found that the survey vision is being realized at a far slower pace than was recommended, principally because the required budget was not achieved. Exacerbating the budget shortfalls, NASA Earth science programs experienced launch failures and delays and the cost of implementing missions increased substantially as a result of changes in mission scope, increases in launch vehicle costs and/or the lack of availability of a medium-class launch vehicle, under-estimation of costs by the decadal survey, and unfunded programmatic changes that were required by Congress and the Office of Management and Budget. In addition, the National Oceanic and Atmospheric Administration (NOAA) has made significant reductions in scope to its future Earth environmental observing satellites as it contends with budget shortfalls. Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey recommends a number of steps to better manage existing programs and to implement future programs that will be recommended by the next decadal survey. The report also highlights the urgent need for the Executive Branch to develop and implement an overarching multiagency national strategy for Earth observations from space, a key recommendation of the 2007 decadal survey that remains unfulfilled.
Continuity of NASA Earth Observations from Space
NASA's Earth Science Division (ESD) conducts a wide range of satellite and suborbital missions to observe Earth's land surface and interior, biosphere, atmosphere, cryosphere, and oceans as part of a program to improve understanding of Earth as an integrated system. Earth observations provide the foundation for critical scientific advances and environmental data products derived from these observations are used in resource management and for an extraordinary range of societal applications including weather forecasts, climate projections, sea level change, water management, disease early warning, agricultural production, and the response to natural disasters. As the complexity of societal infrastructure and its vulnerability to environmental disruption increases, the demands for deeper scientific insights and more actionable information continue to rise. To serve these demands, NASA's ESD is challenged with optimizing the partitioning of its finite resources among measurements intended for exploring new science frontiers, carefully characterizing long-term changes in the Earth system, and supporting ongoing societal applications. This challenge is most acute in the decisions the Division makes between supporting measurement continuity of data streams that are critical components of Earth science research programs and the development of new measurement capabilities. This report seeks to establish a more quantitative understanding of the need for measurement continuity and the consequences of measurement gaps. Continuity of NASA's Earth's Observations presents a framework to assist NASA's ESD in their determinations of when a measurement or dataset should be collected for durations longer than the typical lifetimes of single satellite missions.
Sharing the Adventure with the Student
On December 2-3, 2014, the Space Studies Board and the Board on Science Education of the National Research Council held a workshop on the NASA Science Mission Directorate (SMD) education program - \"Sharing the Adventure with the Student.\" The workshop brought together representatives of the space science and science education communities to discuss maximizing the effectiveness of the transfer of knowledge from the scientists supported by NASA's SMD to K-12 students directly and to teachers and informal educators. The workshop focused not only on the effectiveness of recent models for transferring science content and scientific practices to students, but also served as a venue for dialogue between education specialists, education staff from NASA and other agencies, space scientists and engineers, and science content generators. Workshop participants reviewed case studies of scientists or engineers who were able to successfully translate their research results and research experiences into formal and informal student science learning. Education specialists shared how science can be translated to education materials and directly to students, and teachers shared their experiences of space science in their classrooms. Sharing the Adventure with the Student is the summary of the presentation and discussions of the workshop.
Earth Science and Applications from Space
Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a \"decadal strategy\" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.
Seismic vulnerability assessment of residential buildings using logistic regression and geographic information system (GIS) in Pleret Sub District (Yogyakarta, Indonesia)
Background The Southeast of Yogyakarta City has had the heaviest damages to buildings in the 2006 of Yogyakarta Earthquake disaster. A moderate to strong earthquake of 6.3 Mw shook the 20 km southeast part of the Yogyakarta City early in the morning at 5:54 local time. On top of extensive damage in Yogyakarta and Central Java, more than 5700 people perished; 37,927 people were injured in the collapse of more than 240,396 residential buildings. Furthermore, the earthquake also affected the infrastructure and local economic activities. The total damages and losses because of the earthquake was 29.1 trillion rupiahs or equal to approximately 3.1 million US dollar. Two main factors that caused the severe damages were a dense population and the lack of seismic design of residential buildings. After reconstruction and rehabilitation, the area where the study was conducted grew into a densely populated area. This urbanistic change is feared to be potentially the lead to a great disaster if an earthquake occurs again. Thus, a comprehensive study about building vulnerability is absolutely needed in study area. Therefore, the main objective of this study has been the provision of a probabilistic model of seismic building vulnerability based on the damage data of the last big earthquake. By considering the relationship between building characteristics, site conditions, and the damage level based on probabilistic analysis, this study can offer a better understanding of earthquake damage estimation for residential building in Java. Results The main findings of this study were as follows: The most vulnerable building type is the reinforced masonry structure with clay tile roof, it is located between 8.1-10 km of the epicentre and it is built on young Merapi volcanic deposits. On the contrary, the safest building type is the houses which has characteristics of reinforced masonry structure, asbestos or zinc roof type, and being located in Semilir Formation. The results showed that the building damage probability provided a high accuracy of prediction about 75.81%. Conclusions The results explain the prediction of building vulnerability based on the building damaged of the Yogyakarta earthquake 2006. This study is suitable for preliminary study at the region scale. Thus, the site investigation still needs to be conducted for the future research to determine the safety and vulnerability of residential building.