Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
36,865 result(s) for "Earth stations"
Sort by:
Evaluation of 5G and Fixed-Satellite Service Earth Station (FSS-ES) Downlink Interference Based on Artificial Neural Network Learning Models (ANN-LMS)
Fifth-generation (5G) networks have been deployed alongside fourth-generation networks in high-traffic areas. The most recent 5G mobile communication access technology includes mmWave and sub-6 GHz C-bands. However, 5G signals possibly interfere with existing radio systems because they are using adjacent and co-channel frequencies. Therefore, the minimisation of the interference of 5G with other signals already deployed for other services, such as fixed-satellite service Earth stations (FSS-Ess), is urgently needed. The novelty of this paper is that it addresses issues using measurements from 5G base stations (5G-BS) and FSS-ES, simulation analysis, and prediction modelling based on artificial neural network learning models (ANN-LMs). The ANN-LMs models are used to classify interference events into two classes, namely, adjacent and co-channel interference. In particular, ANN-LMs incorporating the radial basis function neural network (RBFNN) and general regression neural network (GRNN) are implemented. Numerical results considering real measurements carried out in Malaysia show that RBFNN evidences better accuracy with respect to its GRNN counterpart. The outcomes of this work can be exploited in the future as a baseline for coexistence and/or mitigation techniques.
A weighted cooperative spectrum sensing strategy for NGSO–GSO downlink communication
In this paper, aiming at the spectrum coexistence scenario between non-geostationary satellite orbit (NGSO) and geostationary satellite orbit (GSO) satellite systems, the NGSO network, a secondary system, reuses the spectrum resources of the GSO primary system through spectrum sensing and sharing technology. Combined with the influence of factors such as the radio wave propagation model and channel characteristics of the sensing links, as well as the difference of channel environment between sensing nodes, a weighted cooperative spectrum sensing strategy named optimal fusion decision for time-invariant channel link (OFD-TIC) method was proposed for NGSO–GSO downlink sensing communication. The OFD-TIC method is designed to minimize the global error detection probability while considering the constraints of spectrum conflict probability and false alarm probability. To achieve this, OFD-TIC method transforms the optimization problem into a Lagrange function and utilizes Newton’s iterative method to obtain the weights of sensing node and the parameter thresholds for fusion decision. In the six different spectrum sensing scenarios constructed using satellite network data registered by the International Telecommunication Union (ITU), the performance evaluation of the proposed OFD-TIC method is carried out and the simulation results demonstrate that the proposed method outperforms existing typical algorithms. Under the same signal-to-noise ratios (SNR) and sampling number, the OFD-TIC strategy achieves a higher global detection probability than others. Furthermore, the proposed method exhibits fast convergence to 1 of the global detection probability even at low SNR.
Control system design for azimuth position of earth station antennas
Smart earth station antennas have been used for several decades in many applications, from satellite communications to space object detection and tracking. The accuracy of the azimuth position for such antennas plays a crucial role in most steerable ground station antennas. Satellite tracking and space object detection demand precise tracking capabilities from the Earth. Several methods and techniques have been developed and used in industry to control the directions of ground station antennas, including the azimuth position. The challenge of azimuth tracking is increasing with the demand for full-sky coverage and with the exponential increase in space objects, including man-made satellites and operational and nonoperational objects; thus, providing accurate tracking is a key technology that demands continuous enhancement and development. This article presents the use of a PID-proportional-integral-derivative controller, a slide mode controller and a fractional order PID controller. It also introduces a new methodology based on model predictive control (MPC). The manuscript provides the core design for each of these controllers and provides insight into the performance of each controller even in the presence of disturbance. The camel optimization algorithm (COA) was used to obtain the optimal design parameters of each controller in the considered scenarios.
EC-Earth V2.2: description and validation of a new seamless earth system prediction model
EC-Earth, a new Earth system model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. The performance of version 2.2 (V2.2) of the model is compared to observations, reanalysis data and other coupled atmosphere–ocean-sea ice models. The large-scale physical characteristics of the atmosphere, ocean and sea ice are well simulated. When compared to other coupled models with similar complexity, the model performs well in simulating tropospheric fields and dynamic variables, and performs less in simulating surface temperature and fluxes. The surface temperatures are too cold, with the exception of the Southern Ocean region and parts of the Northern Hemisphere extratropics. The main patterns of interannual climate variability are well represented. Experiments with enhanced CO 2 concentrations show well-known responses of Arctic amplification, land-sea contrasts, tropospheric warming and stratospheric cooling. The global climate sensitivity of the current version of EC-Earth is slightly less than 1 K/(W m −2 ). An intensification of the hydrological cycle is found and strong regional changes in precipitation, affecting monsoon characteristics. The results show that a coupled model based on an operational seasonal prediction system can be used for climate studies, supporting emerging seamless prediction strategies.
BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, the brightness and temperature variations of stars generally brighter than mag(V) ≈ 4 with precision and time coverage not possible from the ground. The current mission design consists of six nanosats (hence Constellation): two from Austria, two from Canada, and two from Poland. Each 7 kg nanosat carries an optical telescope of aperture 3 cm feeding an uncooled CCD. One instrument in each pair is equipped with a blue filter; the other with a red filter. Each BRITE instrument has a wide field of view (≈24°), so up to about 15 bright stars can be observed simultaneously, sampled in 32 × 32 pixels sub-rasters. Photometry of additional fainter targets, with reduced precision but thorough time sampling, will be possible through onboard data processing. The BRITE sample is dominated by the most intrinsically luminous stars: massive stars seen at all evolutionary stages, and evolved medium-mass stars at the very end of their nuclear burning phases. The goals of BRITE-Constellation are to (1) measure p- and g-mode pulsations to probe the interiors and ages of stars through asteroseismology; (2) look for varying spots on the stars surfaces carried across the stellar disks by rotation, which are the sources of co-rotating interaction regions in the winds of the most luminous stars, probably arising from magnetic subsurface convection; and (3) search for planetary transits.
Hybrid Satellite–Terrestrial Networks toward 6G: Key Technologies and Open Issues
Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed.
Build a global Earth observatory
Markku Kulmala calls for continuous, comprehensive monitoring of interactions between the planet’s surface and atmosphere. Markku Kulmala calls for continuous, comprehensive monitoring of interactions between the planet’s surface and atmosphere.
An Improved DTN Scheme for Large-Scale LEO Satellite Networks
A large-scale low Earth orbit (LEO) satellite network has the characteristics of a complex link environment, a large number of satellites, and the limited resources of a single satellite. Applying traditional routing algorithms has disadvantages such as high overhead, high end-to-end latency, and low message delivery rate. This paper proposes an improved delay tolerant (DTN) scheme for large-scale LEO satellite networks (LIDTN) to improve transmission efficiency and reduce the resource overhead and end-to-end latency of large-scale satellite networks. This scheme improves the network performance in three aspects: next hop selection, congestion control mechanism, and acknowledgment mechanism. For the next hop selection, we propose an equivalent distance and priori knowledge-based forwarding strategy (EPFS), which has the advantages of low overhead, loop avoidance, and fast convergence. For congestion control, we put forward an emergency function-based bundle drop algorithm (EBDA). For acknowledging, we propose the virtual acknowledgment algorithm (VAA) by combining the characteristics of many path hops and high link disruption rates in large-scale constellations. Finally, we simulate and verify the LIDTN scheme on the OneWeb constellation. The results show that the LIDTN scheme is suitable for large-scale constellations, the EPFS algorithm can reduce the network overhead during data transmission, EBDA can reduce the bundle drop rate, and VAA can reduce the end-to-end latency. LIDTN provides a new solution for large-scale constellation communication.
Optimizing the Deployment of Ground Tracking Stations for Low Earth Orbit Satellite Constellations Based on Evolutionary Algorithms
Low Earth orbit (LEO) satellite constellations have emerged as an effective alternative for the provision of high-accuracy positioning, navigation and timing (PNT) solutions which are based on high-precision orbit and clock information. Determining an orbit with high precision is dependent on the number and distribution of ground tracking stations. Therefore, it is important to investigate methodologies that can ensure the adequate observing coverage of LEO navigation constellations. In this study, an evolutionary algorithm is applied to optimize the number and deployment of ground stations for tracking LEO constellations. According to the distribution area, two schemes of study are analyzed: (a) global deployment—the ground stations are deployed throughout the globe; (b) regional deployment—a selected region is used for deployment. For global deployment, the optimization objectives are focused on the ground station and observing rate for k-heavy observing coverage (HC), while the sole objective for the regional deployment scheme is the satellite position dilution of precision (SPDOP). It is shown that a deployment of 95 ground stations is optimal for achieving 3-HC with an observing rate of 97.37% and 4-HC with an observing rate of 92.01%. For regional distribution, 15, 20 and 25 ground stations are used for three optimal configurations of SPDOP at 2.058, 1.399 and 1.330, respectively. The results are significantly enhanced using intersatellite links for SPDOP evaluation, from 2.058, 1.399 and 1.330 to 0.439, 0.422 and 0.409, with 15, 20 and 25 ground stations, respectively.