Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
5,538 result(s) for "Ebola virus disease Transmission."
Sort by:
Social mobilization and the Ebola virus disease in Liberia
The book offers a summary of the EVD crisis, and the ways it was defeated by the public who were energized by the gravity of the situation. It discusses the lessons learned, the effect of the disease on children, and the way forward for the international health care system.
The factors affecting household transmission dynamics and community compliance with Ebola control measures: a mixed-methods study in a rural village in Sierra Leone
Background Little is understood of Ebola virus disease (EVD) transmission dynamics and community compliance with control measures over time. Understanding these interactions is essential if interventions are to be effective in future outbreaks. We conducted a mixed-methods study to explore these factors in a rural village that experienced sustained EVD transmission in Kailahun District, Sierra Leone. Methods We reconstructed transmission dynamics using a cross-sectional survey conducted in April 2015, and cross-referenced our results with surveillance, burial, and Ebola Management Centre (EMC) data. Factors associated with EVD transmission were assessed with Cox proportional hazards regression. Following the survey, qualitative semi-structured interviews explored views of community informants and households. Results All households ( n  = 240; 1161 individuals) participated in the survey. 29 of 31 EVD probable/confirmed cases died (93·5% case fatality rate); six deaths (20·6%) had been missed by other surveillance systems. Transmission over five generations lasted 16 weeks. Although most households had ≤5 members there was a significant increase in risk of Ebola in households with > 5 members. Risk of EVD was also associated with older age. Cases were spatially clustered; all occurred in 15 households. EVD transmission was better understood when the community experience started to concord with public health messages being given. Perceptions of contact tracing changed from invading privacy and selling people to ensuring community safety. Burials in plastic bags, without female attendants or prayer, were perceived as dishonourable. Further reasons for low compliance were low EMC survival rates, family perceptions of a moral duty to provide care to relatives, poor communication with the EMC, and loss of livelihoods due to quarantine. Compliance with response measures increased only after the second generation, coinciding with the implementation of restrictive by-laws, return of the first survivor, reduced contact with dead bodies, and admission of patients to the EMC. Conclusions Transmission occurred primarily in a few large households, with prolonged transmission and a high death toll. Return of a survivor to the village and more effective implementation of control strategies coincided with increased compliance to control measures, with few subsequent cases. We propose key recommendations for management of EVD outbreaks based on this experience.
Integration of genomic sequencing into the response to the Ebola virus outbreak in Nord Kivu, Democratic Republic of the Congo
On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data ( n  = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making. Phylogeographic analysis of 792 Ebola virus genomes from the 2018 oubreak in the Democratic Republic of the Congo integrated into an end-to-end surveillance program demonstrates the feasibility of using genomic sequencing data to inform the public health epidemic response in near-real time.
Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks
Seven years after the declaration of the first epidemic of Ebola virus disease in Guinea, the country faced a new outbreak—between 14 February and 19 June 2021—near the epicentre of the previous epidemic 1 , 2 . Here we use next-generation sequencing to generate complete or near-complete genomes of Zaire ebolavirus from samples obtained from 12 different patients. These genomes form a well-supported phylogenetic cluster with genomes from the previous outbreak, which indicates that the new outbreak was not the result of a new spillover event from an animal reservoir. The 2021 lineage shows considerably lower divergence than would be expected during sustained human-to-human transmission, which suggests a persistent infection with reduced replication or a period of latency. The resurgence of Zaire ebolavirus from humans five years after the end of the previous outbreak of Ebola virus disease reinforces the need for long-term medical and social care for patients who survive the disease, to reduce the risk of re-emergence and to prevent further stigmatization. The viral lineage responsible for the February 2021 outbreak of Ebola virus disease in Guinea is nested within a clade that predominantly consists of genomes sampled during the 2013–2016 epidemic, suggesting that the virus might have re-emerged after a long period of latency within a previously infected individual.
Viral genomics in Ebola virus research
Filoviruses such as Ebola virus continue to pose a substantial health risk to humans. Advances in the sequencing and functional characterization of both pathogen and host genomes have provided a wealth of knowledge to clinicians, epidemiologists and public health responders during outbreaks of high-consequence viral disease. Here, we describe how genomics has been historically used to investigate Ebola virus disease outbreaks and how new technologies allow for rapid, large-scale data generation at the point of care. We highlight how genomics extends beyond consensus-level sequencing of the virus to include intra-host viral transcriptomics and the characterization of host responses in acute and persistently infected patients. Similar genomics techniques can also be applied to the characterization of non-human primate animal models and to known natural reservoirs of filoviruses, and metagenomic sequencing can be the key to the discovery of novel filoviruses. Finally, we outline the importance of reverse genetics systems that can swiftly characterize filoviruses as soon as their genome sequences are available.Filoviruses such as Ebola virus pose a substantial health risk to humans. Advances in genomic technologies have enabled the rapid, large-scale generation of virus sequence data at the location of disease outbreaks and thus the use of reverse functional genomics to swiftly characterize the threat of, and treatment for, filovirus disease.
Modeling Case Burden and Duration of Sudan Ebola Virus Disease Outbreak in Uganda, 2022
In 2022, a Sudan Ebola virus outbreak was confirmed in Uganda. Within 1 month of the outbreak's onset, we developed an individual-based modeling platform to estimate the unfolding outbreak's burden of cases and deaths, as well as its duration, using different scenarios. Modeled projections were within the range of observed cases.
Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)
rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6–17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9–100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3–100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norway's GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).
Discovery and Description of Ebola Zaire Virus in 1976 and Relevance to the West African Epidemic During 2013-2016
Background. In 1976, the first cases of Ebola virus disease in northern Democratic Republic of the Congo (then referred to as Zaire) were reported. This article addresses who was responsible for recognizing the disease; recovering, identifying, and naming the virus; and describing the epidemic. Key scientific approaches used in 1976 and their relevance to the 3-country (Guinea, Sierra Leone, and Liberia) West African epidemic during 2013-2016 are presented. Methods. Field and laboratory investigations started soon after notification, in mid-September 1976, and included virus cell culture, electron microscopy (EM), immunofluorescence antibody (IFA) testing of sera, case tracing, containment, and epidemiological surveys. In 2013-2016, medical care and public health work were delayed for months until the Ebola virus disease epidemic was officially declared an emergency by World Health Organization, but research in pathogenesis, clinical presentation, including sequelae, treatment, and prevention, has increased more recently. Results. Filoviruses were cultured and observed by EM in Antwerp, Belgium (Institute of Tropical Medicine); Porton Down, United Kingdom (Microbiological Research Establishment); and Atlanta, Georgia (Centers for Disease Control and Prevention). In Atlanta, serological testing identified a new virus. The 1976 outbreak (280 deaths among 318 cases) stopped in < 11 weeks, and basic clinical and epidemiological features were defined. The recent massive epidemic during 2013-2016 (11 310 deaths among 28 616 cases) has virtually stopped after > 2 years. Transmission indices (R₀) are higher in all 3 countries than in 1976. Conclusions. An international commission working harmoniously in laboratories and with local communities was essential for rapid success in 1976. Control and understanding of the recent West African outbreak were delayed because of late recognition and because authorities were overwhelmed by many patients and poor community involvement. Despite obstacles, research was a priority in 1976 and recently.
Transmission dynamics and control of Ebola virus disease (EVD): a review
The complex and unprecedented Ebola epidemic ongoing in West Africa has highlighted the need to review the epidemiological characteristics of Ebola Virus Disease (EVD) as well as our current understanding of the transmission dynamics and the effect of control interventions against Ebola transmission. Here we review key epidemiological data from past Ebola outbreaks and carry out a comparative review of mathematical models of the spread and control of Ebola in the context of past outbreaks and the ongoing epidemic in West Africa. We show that mathematical modeling offers useful insights into the risk of a major epidemic of EVD and the assessment of the impact of basic public health measures on disease spread. We also discuss the critical need to collect detailed epidemiological data in real-time during the course of an ongoing epidemic, carry out further studies to estimate the effectiveness of interventions during past outbreaks and the ongoing epidemic, and develop large-scale modeling studies to study the spread and control of viral hemorrhagic fevers in the context of the highly heterogeneous economic reality of African countries.