Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,663 result(s) for "Ecology (including Biodiversity Conservation)"
Sort by:
Pesticide use negatively affects bumble bees across European landscapes
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species 1 , 2 , leading to restrictions on these compounds 3 . However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes 4 – 9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts 10 , 11 . These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use. Results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries find pesticides in bumble bee pollen to be associated with reduced colony performance, especially in areas of intensive agriculture.
Wild insect diversity increases inter-annual stability in global crop pollinator communities
While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.
Soil networks become more connected and take up more carbon as nature restoration progresses
Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.
Field sizes and the future of farmland biodiversity in European landscapes
Lower diversity of plant and animal farmland species are usually reported where cropland has been aggregated into larger fields, which raises prospects of curbing declines in European farmland biodiversity and associated ecosystem services by halting trends to field size increases associated to agricultural intensification, without having to set aside arable land for conservation. Here, we consider the factors underlying trade‐offs between farmer income and biodiversity as mediated by field size at local and landscape scales, and how these trade‐offs may be overcome. Field sizes are still increasing, facilitated by increasing farm sizes and land consolidation. Decreases in working time and fuel expenses when fields are larger, uptake of larger machinery and subsidies favoring larger farms provide incentives to manage land in larger units, putting farmland biodiversity further at risk. Yet, field size‐mediated ecological–economic trade‐offs are largely ignored in policy and research. We recommend internalizing the ecological effects of changes in landscape‐scale field size into land consolidation scheme design, ensuring that EU Common Agricultural Policy post‐2020 rewards farmers that maintain and recreate fine‐grained landscapes where these are essential for farmland biodiversity targets, and reducing economic–ecological trade‐offs by stimulating agricultural research and innovation for economically efficient yet biodiversity‐friendly farming in fine‐grained landscapes.
Opportunities to reduce pollination deficits and address production shortfalls in an important insect-pollinated crop
Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of “pollination deficits,” where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared “pollinator dependence” across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.
Flowering resources distract pollinators from crops
Enhancing floral resources is a widely accepted strategy for supporting wild bees and promoting crop pollination. Planning effective enhancements can be informed with pollination service models, but these models should capture the behavioural and spatial dynamics of service‐providing organisms. Model predictions, and hence management recommendations, are likely to be sensitive to these dynamics. We used two established models of pollinator foraging to investigate whether habitat enhancement improves crop visitation; whether this effect is influenced by pollinator foraging distance and landscape pattern; and whether behavioural detail improves model predictions. The more detailed central place foraging model better predicted variation in bee visitation observed between habitat types, because it includes optimized trade‐offs between patch quality and distance. Both models performed well when predicting visitation rates across broader scales. Using real agricultural landscapes and simulating habitat enhancements, we show that additional floral resources can have diverging effects on predicted crop visitation. When only co‐flowering resources were added, optimally foraging bees concentrated in enhancements to the detriment of crop pollination. For both models, adding nesting resources increased crop visitation. Finally, the marginal effect of enhancements was greater in simple landscapes. Synthesis and applications. Model results help to identify the conditions under which habitat enhancements are most likely to increase pollination services in agriculture. Three design principles for pollinator habitat enhancement emerge: (a) enhancing only flowers can diminish services by distracting pollinators away from crops, (b) providing nesting resources is more likely to increase bee populations and crop visitation and (c) the benefit of enhancements will be greatest in landscapes that do not already contain abundant habitat. Model results help to identify the conditions under which habitat enhancements are most likely to increase pollination services in agriculture. Three design principles for pollinator habitat enhancement emerge: (a) enhancing only flowers can diminish services by distracting pollinators away from crops, (b) providing nesting resources is more likely to increase bee populations and crop visitation and (c) the benefit of enhancements will be greatest in landscapes that do not already contain abundant habitat.
Maize-dominated landscapes reduce bumblebee colony growth through pollen diversity loss
Bumblebees are important pollinators for a wide range of crops and wild plants. Performance of their colonies depends on pollen and nectar as food resources, but flowering plants are scarce in modern agricultural landscapes. It is well‐known that semi‐natural habitats can enhance floral resources and bumblebee abundance, but the impact of different crop types and their heterogeneity at the landscape scale remains unclear. We tested the effect of two different crop types (oilseed rape [OSR] and maize) and of configurational (field border density) and compositional heterogeneity (crop diversity) on weight gain of buff‐tailed bumblebee colonies (Bombus terrestris) and the pollen diversity collected by them in 20 landscapes in Central Germany. We found that augmenting maize cover had a detrimental effect on pollen diversity collected by bumblebees, probably due to intensive management resulting in low plant diversity. This low pollen diversity translated into reduced colony growth, since colonies with high pollen diversity gained more weight than colonies with low pollen diversity. In contrast, OSR cover and configurational and compositional heterogeneity did neither affect colony growth nor pollen diversity. However, for OSR, the timing of the flowering period was important. When OSR fields had a high flower cover at the end of the OSR blooming period, colonies showed increased growth rates. Synthesis and applications. Our results complement previous laboratory studies by showing that high pollen diversity leads to better colony performance under field conditions. Therefore, the maintenance of floral diversity in agricultural landscapes is crucial to ensure that bumblebees can fulfil their nutritional needs. However, the heterogeneity of crops, at least under the currently very low levels of crop rotation, does not contribute to this aim. In contrast, crop identity and timing of mass‐flowering crops turned out to be important factors, as maize reduced pollen resources, while late blooming oilseed rape (OSR) was beneficial to bumblebee colonies. Hence, maize cover per landscape should be reduced and strategies to enhance landscape wide flower diversity, especially towards and after the end of oilseed rape bloom, should be promoted to support bumblebee colonies that provide important pollination services. Our results complement previous laboratory studies by showing that high pollen diversity leads to better colony performance under field conditions. Therefore, the maintenance of floral diversity in agricultural landscapes is crucial to ensure that bumblebees can fulfil their nutritional needs. However, the heterogeneity of crops, at least under the currently very low levels of crop rotation, does not contribute to this aim. In contrast, crop identity and timing of mass‐flowering crops turned out to be important factors, as maize reduced pollen resources, while late blooming oilseed rape (OSR) was beneficial to bumblebee colonies. Hence, maize cover per landscape should be reduced and strategies to enhance landscape wide flower diversity, especially towards and after the end of oilseed rape bloom, should be promoted to support bumblebee colonies that provide important pollination services.
Experimental evidence that honeybees depress wild insect densities in a flowering crop
While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences).
Predation-mediated ecosystem services and disservices in agricultural landscapes
Ecological intensification may reduce environmental externalities of agriculture by harnessing biodiversity to benefit regulating ecosystem services. However, to propose management options for the production of such services, there is a need to understand the spatiotemporal dynamics of net effects between ecosystem services and disservices provided by wild organisms across taxonomic groups in relation to habitat and landscape management. We studied the contribution of predatory vertebrates and invertebrates (including both carnivores and seed herbivores) to regulating ecosystem services and disservices in 16 cereal fields in response to a local habitat contrast and a landscape complexity gradient. From May to November 2016, we provided weed (predation reflects an ecosystem service) and crop (predation reflects a disservice) seeds, as well as pest (predation reflects an ecosystem service) and beneficial (predation reflects a disservice) invertebrate prey to predators. Seed predation was dominated by vertebrates, while vertebrates and invertebrates contributed equally to predation of animal prey. Before harvest, predation steadily increased from very low levels in May to high levels in July independent of the resource type. After harvest, ecosystem services declined more rapidly than disservices. The presence of adjacent seminatural grasslands promoted crop seed predation, but reduced pest prey predation. Predation on beneficial prey decreased with increasing proportions of seminatural grassland in the landscape. Predatory vertebrates and invertebrates provide important ecosystem services due to the consumption of pests. However, beneficial invertebrates and crop seeds were often consumed to a similar or even higher extent than harmful invertebrates or weed seeds. Our results therefore raise concerns that management options aimed at enhancing service providers may simultaneously increase levels of disservices. By considering positive and negative effects simultaneously, this study addresses an important knowledge gap and highlights the importance of interactions between local management, landscape composition, and service and disservice provision across taxa and over time. Considering trade-offs between ecosystem services and disservices when evaluating the net effects of biodiversity conservation measures on ecosystem service provision is crucial. Future agri-environment schemes that offer payments for seminatural habitats may need to provide higher compensation for farmers in cases where net effects are likely to be negative.
Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds
PECBMS is supported financially by the RSPB and the European Commission. TT was supported by Institutional Research Plan (RVO: 68081766), SH and LB were supported by EUBON project (308454; FP7‐ENV‐2012 European Commission) and the TRUSTEE project (RURAGRI ERA‐NET 235175), and AL received financial support from the Academy of Finland (project 275606).