Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
324,893 result(s) for "Economic Factors"
Sort by:
The social determinants of mental health
The book provides a foundation of knowledge on the social and environmental underpinnings of mental health and mental illnesses for clinical and policy decision making, with a goal to improve the mental health of individuals across diverse communities and the mental health of the nation.
Controlling contagion : epidemics and institutions from the black death to Covid
\"From the Black Death to Covid, infectious diseases have killed far more people than hunger or violence, and they still cause 40 per cent of deaths in developing countries today. Epidemic disease is one of our best laboratories for exploring how societies deal with negative externalities-a cost not paid wholly by oneself, but instead discharged partly onto other people. Once an epidemic is raging, it raises three challenges for society which this book seeks to address. First, what institutions help care for the victims? Second, what institutions help societies recover from the huge economic devastation caused by mass disease, disability, and death? And finally, how are institutions themselves affected by epidemics? Analysing eight centuries of historical epidemics in Europe, the Middle East, China, India, Africa, and the Americas, economic historian Sheilagh Ogilvie investigates how six key social institutions (the market, the state, the community, religion, the guild, and the family) have shaped how people have dealt with the costs of contagion. She demonstrates that fighting epidemics requires resources, coercion, monitoring, exhortation, expertise, and nurturing. Each institution is good at mobilising some of these, but no institution is good at all. A social framework in which multiple institutions coexist has a better chance of tackling the multiplicity of challenges posed by contagion\"-- Provided by publisher.
Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China
This study models local and cross-city transmissions of the novel coronavirus in China between January 19 and February 29, 2020. We examine the role of various socioeconomic mediating factors, including public health measures that encourage social distancing in local communities. Weather characteristics 2 weeks prior are used as instrumental variables for causal inference. Stringent quarantines, city lockdowns, and local public health measures imposed in late January significantly decreased the virus transmission rate. The virus spread was contained by the middle of February. Population outflow from the outbreak source region posed a higher risk to the destination regions than other factors, including geographic proximity and similarity in economic conditions. We quantify the effects of different public health measures in reducing the number of infections through counterfactual analyses. Over 1.4 million infections and 56,000 deaths may have been avoided as a result of the national and provincial public health measures imposed in late January in China.
Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1·7 million men and women
In 2011, WHO member states signed up to the 25 × 25 initiative, a plan to cut mortality due to non-communicable diseases by 25% by 2025. However, socioeconomic factors influencing non-communicable diseases have not been included in the plan. In this study, we aimed to compare the contribution of socioeconomic status to mortality and years-of-life-lost with that of the 25 × 25 conventional risk factors. We did a multicohort study and meta-analysis with individual-level data from 48 independent prospective cohort studies with information about socioeconomic status, indexed by occupational position, 25 × 25 risk factors (high alcohol intake, physical inactivity, current smoking, hypertension, diabetes, and obesity), and mortality, for a total population of 1 751 479 (54% women) from seven high-income WHO member countries. We estimated the association of socioeconomic status and the 25 × 25 risk factors with all-cause mortality and cause-specific mortality by calculating minimally adjusted and mutually adjusted hazard ratios [HR] and 95% CIs. We also estimated the population attributable fraction and the years of life lost due to suboptimal risk factors. During 26·6 million person-years at risk (mean follow-up 13·3 years [SD 6·4 years]), 310 277 participants died. HR for the 25 × 25 risk factors and mortality varied between 1·04 (95% CI 0·98–1·11) for obesity in men and 2 ·17 (2·06–2·29) for current smoking in men. Participants with low socioeconomic status had greater mortality compared with those with high socioeconomic status (HR 1·42, 95% CI 1·38–1·45 for men; 1·34, 1·28–1·39 for women); this association remained significant in mutually adjusted models that included the 25 × 25 factors (HR 1·26, 1·21–1·32, men and women combined). The population attributable fraction was highest for smoking, followed by physical inactivity then socioeconomic status. Low socioeconomic status was associated with a 2·1-year reduction in life expectancy between ages 40 and 85 years, the corresponding years-of-life-lost were 0·5 years for high alcohol intake, 0·7 years for obesity, 3·9 years for diabetes, 1·6 years for hypertension, 2·4 years for physical inactivity, and 4·8 years for current smoking. Socioeconomic circumstances, in addition to the 25 × 25 factors, should be targeted by local and global health strategies and health risk surveillance to reduce mortality. European Commission, Swiss State Secretariat for Education, Swiss National Science Foundation, the Medical Research Council, NordForsk, Portuguese Foundation for Science and Technology.
Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition
The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions. Bill & Melinda Gates Foundation.
Modelling and prediction of global non-communicable diseases
Background Non-communicable diseases (NCDs) are the main health and development challenge facing humankind all over the world. They are inextricably linked to socio-economic development. Deaths caused by NCDs should be different in different socio-economic development stages. The stratified heterogeneity of NCD deaths is currently not fully explored. Methods Countries were classified according to their socio-economic types and development stages, which were illustrated as a tree-like structure called Geotree. NCD deaths were linked to the countries and so were attached to the Geotree, which was modelled by a multilevel model (MLM) approach. Accordingly, the levels of NCD death indexes were predicted for 2030. Results Through the Geotree structure constructed in the study, it can be seen that the NCD death index has obvious stratified heterogeneity; that is, the NCD death index shows different trends in different country types and socio-economic development stages. In the first-level branches (country type), as national income increases, NCD mortality rate decreases and the proportion of NCD deaths to total deaths increases. In the secondary-level trunks (socio-economic development stage), as a country’s development stage rises, the NCD mortality rate decreases and the proportion of NCD deaths to total deaths increases. In addition, combined with the hierarchical nature of the evolution tree model, the MLM was used to predict the global NCD death index for 2030. The result was that by 2030, the global average age-standardized NCD mortality rate would be 510.54 (per 100,000 population) and the global average mortality for NCD deaths of the total number of deaths would be 75.26%. Conclusions This study found that there is a significant association between socio-economic factors and NCD death indicators in the tree-like structure. In the Geotree, countries on the same branch or trunk can learn from countries with higher development stages to formulate more effective NCD response policies and find the right prevention and treatment path.
Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years and 75 years and older. Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Bill & Melinda Gates Foundation.