Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,395
result(s) for
"Ecotypes"
Sort by:
The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication
2019
High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of
Arachis hypogaea
and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42–0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement.
High-quality genome sequence of cultivated peanut comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models provides insights into genome evolution and the genetic mechanisms underlying seed size and leaf resistance in peanut.
Journal Article
Pollinator-driven ecological speciation in plants: new evidence and future perspectives
by
Johnson, Steven D
,
Van der Niet, Timotheüs
,
Peakall, Rod
in
Angiospermae
,
Animals
,
Biological Evolution
2014
BackgroundThe hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation.ScopeThis Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation.
Journal Article
Variations in CYP74B2 (Hydroperoxide Lyase) Gene Expression Differentially Affect Hexenal Signaling in the Columbia and Landsberg erecta Ecotypes of Arabidopsis1w
2005
The CYP74B2 gene in Arabidopsis (Arabidopsis thaliana) ecotype Columbia (Col) contains a 10-nucleotide deletion in its first exon that causes it to code for a truncated protein not containing the P450 signature typical of other CYP74B subfamily members. Compared to CYP74B2 transcripts in the Landsberg erecta (Ler) ecotype that code for full-length hydroperoxide lyase (HPL) protein, CYP74B2 transcripts in the Col ecotype accumulate at substantially reduced levels. Consistent with the nonfunctional HPL open reading frame in the Col ecotype, in vitro HPL activity analyses using either linoleic acid hydroperoxide or linolenic acid hydroperoxide as substrates show undetectable HPL activity in the Col ecotype and C6 volatile analyses using leaf homogenates show substantially reduced amounts of hexanal and no detectable trans-2-hexenal generated in the Col ecotype. P450-specific microarrays and full-genome oligoarrays have been used to identify the range of other transcripts expressed at different levels in these two ecotypes potentially as a result of these variations in HPL activity. Among the transcripts expressed at significantly lower levels in Col leaves are those coding for enzymes involved in the synthesis of C6 volatiles (LOX2, LOX3), jasmonates (OPR3, AOC), and aliphatic glucosinolates (CYP83A1, CYP79F1, AOP3). Two of the three transcripts coding for aliphatic glucosinolates (CYP83A1, AOP3) are also expressed at significantly lower levels in Col flowers.
Journal Article
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations
2017
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of
Escherichia coli
in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria’s mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Journal Article
Variations in growth, physiology and fodder quality among salicornia persica ecotypes irrigated with persian gulf seawater
by
Izadi, Yazdan
,
Ranjbar, Gholamhassan
,
Nabipour, Majid
in
631/443
,
631/449
,
Agricultural Irrigation
2025
Fodder production in saline environments requires salt-tolerant plants. This study investigated the potential of the halophyte
Salicornia persica
ecotypes as a fodder crop under seawater salinity by examining its physiological and biochemical responses. The effects of varying salinity levels [control (0.96 dS.m
−1
), and 10, 20, and 40 dS.m
−1
, achieved by diluting Persian Gulf water] on growth, yield, stomatal exchange rate, photosynthetic traits, and qualitative fodder characteristics were evaluated. Three
S. persica
accessions collected in Iran (Central Plateau, Urmia, and Bushehr) were included. The results showed that, among the tested ecotypes, Central Plateau and Urmia exhibited the most desirable interaction with the 10 dS.m
−1
salinity treatment, highlighting a beneficial combination of ecotype and salinity level. Regarding growth characteristics, plant height and forage yield were highest at 10 dS.m
−1
and lowest at 40 dS.m
−1
salinity. In terms of forage quality, the Bushehr accession under non-stress conditions and the Central Plateau accession at 20 dS.m
−1
exhibited the highest nitrogen and crude protein percentages. The 10 and 20 dS.m
−1
salinity treatments displayed more favorable forage quality profiles, whereas the 40 dS.m
−1
treatment resulted in elevated fiber and Acid Detergent Fiber (ADF) percentages, potentially reduces fodder palatability for livestock. These findings suggest that the Central Plateau and Urmia ecotypes demonstrate significant potential for forage production in saline environments. These ecotypes are a promising option for cultivation in coastal areas, particularly with irrigation using Persian Gulf seawater at a salinity of 10–20 dS.m
−1
.
Journal Article
The genomic basis of adaptive evolution in threespine sticklebacks
by
Zody, Michael C.
,
Miller, Craig T.
,
Chan, Yingguang Frank
in
631/158/857
,
631/181/759/2467
,
631/208/182
2012
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.
A reference genome sequence for threespine sticklebacks, and re-sequencing of 20 additional world-wide populations, reveals loci used repeatedly during vertebrate evolution; multiple chromosome inversions contribute to marine-freshwater divergence, and regulatory variants predominate over coding variants in this classic example of adaptive evolution in natural environments.
The genomics of stickleback speciation
Threespine sticklebacks have become a powerful model for studying the molecular basis of adaptive evolution. This paper presents a high-quality reference genome sequence, along with genomes of 20 further individuals from a global set of marine and freshwater populations. Genomic analysis reveals that reuse of globally shared standing genetic variation plays an important part in repeated evolution of distinct stickleback populations, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. The data are consistent with an important role for regulatory changes during parallel evolution of marine and freshwater sticklebacks.
Journal Article
Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient
by
Weihe, Claudia
,
Chase, Alexander B.
,
Martiny, Jennifer B. H.
in
Actinobacteria - classification
,
Actinobacteria - genetics
,
Actinobacteria - growth & development
2021
Microbial community responses to environmental change are largely associated with ecological processes; however, the potential for microbes to rapidly evolve and adapt remains relatively unexplored in natural environments. To assess how ecological and evolutionary processes simultaneously alter the genetic diversity of a microbiome, we conducted two concurrent experiments in the leaf litter layer of soil over 18 mo across a climate gradient in Southern California. In the first experiment, we reciprocally transplanted microbial communities from five sites to test whether ecological shifts in ecotypes of the abundant bacterium, Curtobacterium, corresponded to past adaptive differentiation. In the transplanted communities, ecotypes converged toward that of the native communities growing on a common litter substrate. Moreover, these shifts were correlated with community-weighted mean trait values of the Curtobacterium ecotypes, indicating that some of the trait variation among ecotypes could be explained by local adaptation to climate conditions. In the second experiment, we transplanted an isogenic Curtobacterium strain and tracked genomic mutations associated with the sites across the same climate gradient. Using a combination of genomic and metagenomic approaches, we identified a variety of nonrandom, parallel mutations associated with transplantation, including mutations in genes related to nutrient acquisition, stress response, and exopolysaccharide production. Together, the field experiments demonstrate how both demographic shifts of previously adapted ecotypes and contemporary evolution can alter the diversity of a soil microbiome on the same timescale.
Journal Article
Sampling biases shape our view of the natural world
2021
Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies. Using 742 million records of 374 900 species, we explore the global patterns and impacts of biases related to taxonomy, accessibility, ecotype and data type across terrestrial and marine systems. Pervasive sampling and observation biases exist across animals, with only 6.74% of the globe sampled, and disproportionately poor tropical sampling. High elevations and deep seas are particularly unknown. Over 50% of records in most groups account for under 2% of species and citizen‐science only exacerbates biases. Additional data will be needed to overcome many of these biases, but we must increasingly value data publication to bridge this gap and better represent species' distributions from more distant and inaccessible areas, and provide the necessary basis for conservation and management.
Journal Article
Cell Wall Polysaccharide-Mediated Cadmium Tolerance Between Two Arabidopsis thaliana Ecotypes
by
Xiao, Yan
,
Ismail, Abdelbagi M.
,
Liang, Guihong
in
Acids
,
Aluminum
,
Arabidopsis thaliana ecotypes
2020
Cadmium (Cd) is a toxic metal element and the mechanism(s) underlying Cd tolerance in plants are still unclear. Increasingly more studies have been conducted on Cd binding to plant cell walls (CW) but most of them have focused on Cd fixation by CW pectin, and few studies have examined Cd binding to cellulose and hemicellulose. Here we found that Cd binding to CW pectin, cellulose, and hemicellulose was significantly higher in Tor-1, a Cd tolerant A. thaliana ecotype, than in Ph2-23, a sensitive ecotype, as were the concentrations of pectin, cellulose, and hemicellulose. Transcriptome analysis revealed that the genes regulating CW pectin, cellulose, and hemicellulose polysaccharide concentrations in Tor-1 differed significantly from those in Ph2-23. The expressions of most genes such as pectin methyl esterase inhibitors ( PMEIs ), pectin lyases, xyloglucan endotransglucosylase/hydrolase, expansins ( EXPAs ), and cellulose hydrolase were higher in Ph2-23, while the expressions of cellulose synthase-like glycosyltransferase 3 ( CSLG3 ) and pectin ethyl esterase 4 ( PAE4 ) were higher in Tor-1. The candidate genes identified here seem to regulate CW Cd fixation by polysaccharides. In conclusion, an increase in pectin demethylation activity, the higher concentration of cellulose and hemicellulose, regulated by related genes, in Tor-1 than in Ph2-23 are likely involved in enhanced Cd CW retention and reduce Cd toxicity.
Journal Article
Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola
by
Haixia Zhao
,
Huan Liu
,
Wenzhong Xu
in
Adenosine triphosphatase
,
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - metabolism
2017
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear.
Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii.
Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn.
These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
Journal Article