Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
18
result(s) for
"Edar Receptor - chemistry"
Sort by:
Genome-wide detection and characterization of positive selection in human populations
by
Lohmueller, Jason
,
Byrne, Elizabeth H.
,
McCarroll, Steven A.
in
Antiporters - genetics
,
Biological and medical sciences
,
Edar Receptor - chemistry
2007
HapMap2 raises the bar
The International HapMap Consortium has produced a second-generation version of its remarkable haplotype map of the human genome. The Phase II HapMap charts human genetic variation even more extensively than the original, tripling of the number of genetic markers included. The original HapMap was instrumental in making large-scale genome-wide association studies possible. An indication of how this type of work will be extended with 'HapMap2' is presented in this issue: Sabeti
et al
. build on previous work detecting signs of positive natural selection on human genes. With many more markers now available, they have discovered three examples of apparent population-specific selection based on geographic area — involving gene pairs linked to Lassa virus in West Africa, skin pigmentation in Europe and hair follicle development in Asia — and they speculate on how these may relate to human biology.
Sabeti
et al
. build on their This paper builds on previous work of detecting selection on human genes, using the many more markers available in the Phase II HapMap project. Three examples of apparent population-specific selection based on geographic area are described, and how these may relate to human biology is discussed.
With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2)
1
. We used ‘long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection
2
, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:
LARGE
and
DMD
, both related to infection by the Lassa virus
3
, in West Africa;
SLC24A5
and
SLC45A2
, both involved in skin pigmentation
4
,
5
, in Europe; and
EDAR
and
EDA2R
, both involved in development of hair follicles
6
, in Asia.
Journal Article
Deleterious Variants in WNT10A, EDAR, and EDA Causing Isolated and Syndromic Tooth Agenesis: A Structural Perspective from Molecular Dynamics Simulations
by
Iqbal, Maria
,
Aziz, Salman
,
Wasif, Naveed
in
Ectodermal Dysplasia 1, Anhidrotic - genetics
,
Ectodermal Dysplasia 1, Anhidrotic - pathology
,
Ectodysplasins - chemistry
2019
The dental abnormalities are the typical features of many ectodermal dysplasias along with congenital malformations of nails, skin, hair, and sweat glands. However, several reports of non-syndromic/isolated tooth agenesis have also been found in the literature. The characteristic features of hypohidrotic ectodermal dysplasia (HED) comprise of hypodontia/oligodontia, along with hypohidrosis/anhidrosis, and hypotrichosis. Pathogenic variants in EDA, EDAR, EDARADD, and TRAF6, cause the phenotypic expression of HED. Genetic alterations in EDA and WNT10A cause particularly non-syndromic/isolated oligodontia. In the current project, we recruited 57 patients of 17 genetic pedigrees (A-Q) from different geographic regions of the world, including Pakistan, Egypt, Saudi Arabia, and Syria. The molecular investigation of different syndromic and non-syndromic dental conditions, including hypodontia, oligodontia, generalized odontodysplasia, and dental crowding was carried out by using exome and Sanger sequencing. We have identified a novel missense variant (c.311G>A; p.Arg104His) in WNT10A in three oligodontia patients of family A, two novel sequence variants (c.207delinsTT, p.Gly70Trpfs*25 and c.1300T>G; p.Try434Gly) in EDAR in three patients of family B and four patients of family C, respectively. To better understand the structural and functional consequences of missense variants in WNT10A and EDAR on the stability of the proteins, we have performed extensive molecular dynamic (MD) simulations. We have also identified three previously reported pathogenic variants (c.1076T>C; p.Met359Thr), (c.1133C>T; p.Thr378Met) and (c.594_595insC; Gly201Argfs*39) in EDA in family D (four patients), E (two patients) and F (one patient), correspondingly. Presently, our data explain the genetic cause of 18 syndromic and non-syndromic tooth agenesis patients in six autosomal recessive and X-linked pedigrees (A-F), which expand the mutational spectrum of these unique clinical manifestations.
Journal Article
Characterisation of a second gain of function EDAR variant, encoding EDAR380R, in East Asia
by
Basu, Mallick Chandana
,
Schoenebeck, Jeffrey J
,
Riddell, Jon
in
Alleles
,
Ectodysplasin
,
Geographical distribution
2020
Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.
Journal Article
Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning
by
European Project: 639638,H2020,ERC-2014-STG,MESOPROBIO
,
Laudet, Vincent
,
Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
in
Activation
,
Animals
,
Bernard, Claude (1813-1878)
2019
When patterns are set during embryogenesis, it is expected that they are straightly established rather than subsequently modified. The patterning of the three mouse molars is, however, far from straight, likely as a result of mouse evolutionary history. The first-formed tooth signaling centers, called MS and R2, disappear before driving tooth formation and are thought to be vestiges of the premolars found in mouse ancestors. Moreover, the mature signaling center of the first molar (M1) is formed from the fusion of two signaling centers (R2 and early M1). Here, we report that broad activation of Edar expression precedes its spatial restriction to tooth signaling centers. This reveals a hidden two-step patterning process for tooth signaling centers, which was modeled with a single activator–inhibitor pair subject to reaction–diffusion (RD). The study of Edar expression also unveiled successive phases of signaling center formation, erasing, recovering, and fusion. Our model, in which R2 signaling center is not intrinsically defective but erased by the broad activation preceding M1 signaling center formation, predicted the surprising rescue of R2 in Edar mutant mice, where activation is reduced. The importance of this R2–M1 interaction was confirmed by ex vivo cultures showing that R2 is capable of forming a tooth. Finally, by introducing chemotaxis as a secondary process to RD, we recapitulated in silico different conditions in which R2 and M1 centers fuse or not. In conclusion, pattern formation in the mouse molar field relies on basic mechanisms whose dynamics produce embryonic patterns that are plastic objects rather than fixed end points.
Journal Article
Keratinocyte-specific ablation of the NF-κB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis
2011
The ubiquitin-editing enzyme A20 (tumor necrosis factor-
α
-induced protein 3) serves as a critical brake on nuclear factor
κ
B (NF-
κ
B) signaling. In humans, polymorphisms in or near the
A20
gene are associated with several inflammatory disorders, including psoriasis. We show here that epidermis-specific A20-knockout mice (A20
EKO
) develop keratinocyte hyperproliferation, but no signs of skin inflammation, such as immune cell infiltration. However, A20
EKO
mice clearly developed ectodermal organ abnormalities, including disheveled hair, longer nails and sebocyte hyperplasia. This phenotype resembles that of mice overexpressing ectodysplasin-A1 (EDA-A1) or the ectodysplasin receptor (EDAR), suggesting that A20 negatively controls EDAR signaling. We found that A20 inhibited EDAR-induced NF-
κ
B signaling independent from its de-ubiquitinating activity. In addition, A20 expression was induced by EDA-A1 in embryonic skin explants, in which its expression was confined to the hair placodes, known to be the site of EDAR expression. In summary, our data indicate that EDAR-induced NF-
κ
B levels are controlled by A20, which functions as a negative feedback regulator, to assure proper skin homeostasis and epidermal appendage development.
Journal Article
Elevated EDAR signalling promotes mammary gland tumourigenesis with squamous metaplasia
2022
Ectodysplasin A receptor (EDAR) is a death receptor in the Tumour Necrosis Factor Receptor (TNFR) superfamily with roles in the development of hair follicles, teeth and cutaneous glands. Here we report that human Oestrogen Receptor (ER) negative breast carcinomas which display squamous differentiation express
EDAR
strongly. Using a mouse model with a high
Edar
copy number, we show that elevated EDAR signalling results in a high incidence of mammary tumours in breeding female mice. These tumours resemble the
EDAR
-high human tumours in that they are characterised by a lack of oestrogen receptor expression, contain extensive squamous metaplasia, and display strong β-catenin transcriptional activity. In the mouse model, all of the tumours carry somatic deletions of the third exon of the
CTNNB1
gene that encodes β-catenin. Deletion of this exon yields unconstrained β-catenin signalling activity. We also demonstrate that β-catenin activity is required for transformed cell growth, showing that increased EDAR signalling creates an environment in which β-catenin activity can readily promote tumourigenesis. Together, this work identifies a novel death receptor oncogene in breast cancer, whose mechanism of transformation is based on the interaction between the WNT and Ectodysplasin A (EDA) pathways.
Journal Article
Feather arrays are patterned by interacting signalling and cell density waves
by
Painter, Kevin J.
,
Freem, Lucy
,
Davey, Megan G.
in
Animal feathers
,
Animals
,
Applied mathematics
2019
Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.
Journal Article
EDA Variants Are Responsible for Approximately 90% of Deciduous Tooth Agenesis
by
Feng, Hailan
,
Yu, Miao
,
Su, Lanxin
in
Agenesis
,
Anodontia - genetics
,
Bone Morphogenetic Protein 4 - genetics
2024
Deciduous tooth agenesis is a severe craniofacial developmental defect because it affects masticatory function from infancy and may result in delayed growth and development. Here, we aimed to identify the crucial pathogenic genes and clinical features of patients with deciduous tooth agenesis. We recruited 84 patients with severe deciduous tooth agenesis. Whole-exome and Sanger sequencing were used to identify the causative variants. Phenotype–genotype correlation analysis was conducted. We identified 54 different variants in 8 genes in 84 patients, including EDA (73, 86.9%), PAX9 (2, 2.4%), LRP6 (2, 2.4%), MSX1 (2, 2.4%), BMP4 (1, 1.2%), WNT10A (1, 1.2%), PITX2 (1, 1.2%), and EDARADD (1, 1.2%). Variants in ectodysplasin A (EDA) accounted for 86.9% of patients with deciduous tooth agenesis. Patients with the EDA variants had an average of 15.4 missing deciduous teeth. Mandibular deciduous central incisors had the highest missing rate (100%), followed by maxillary deciduous lateral incisors (98.8%) and mandibular deciduous lateral incisors (97.7%). Our results indicated that EDA gene variants are major pathogenic factors for deciduous tooth agenesis, and EDA is specifically required for deciduous tooth development. The results provide guidance for clinical diagnosis and genetic counseling of deciduous tooth agenesis.
Journal Article
Gene defect in ectodermal dysplasia implicates a death domain adapter in development
by
Emmal, Stephanie A.
,
Ferguson, Betsy M.
,
Sharpe, Paul T.
in
Amino Acid Sequence
,
Animals
,
Biological and medical sciences
2001
Members of the tumour-necrosis factor receptor (TNFR) family that contain an intracellular death domain initiate signalling by recruiting cytoplasmic death domain adapter proteins
1
,
2
. Edar is a death domain protein of the TNFR family that is required for the development of hair, teeth and other ectodermal derivatives
3
,
4
. Mutations in Edar—or its ligand, Eda—cause hypohidrotic ectodermal dysplasia in humans and mice
3
,
4
,
5
,
6
,
7
. This disorder is characterized by sparse hair, a lack of sweat glands and malformation of teeth
8
. Here we report the identification of a death domain adapter encoded by the mouse
crinkled
locus. The
crinkled
mutant has an hypohidrotic ectodermal dysplasia phenotype identical to that of the
edar
(
downless
) and
eda
(
Tabby
) mutants
9
. This adapter, which we have called Edaradd (for Edar-associated death domain), interacts with the death domain of Edar and links the receptor to downstream signalling pathways. We also identify a missense mutation in its human orthologue,
EDARADD
, that is present in a family affected with hypohidrotic ectodermal dysplasia. Our findings show that the death receptor/adapter signalling mechanism is conserved in developmental, as well as apoptotic, signalling.
Journal Article
Fine Wrinkle Improvement through Bioactive Materials That Modulate EDAR and BNC2 Gene Expression
2024
Skin aging is a multifaceted biological phenomenon influenced by a combination of intrinsic or extrinsic factors. There is an increasing interest in anti-aging materials including components that improve skin wrinkles. Despite the availability of several such wrinkle-improving materials, the demand for ingredients with outstanding efficacy is increasing. Therefore, this study aimed to explore the mechanisms of wrinkle-related genes reported in previous genome-wide association studies (GWASs), identify materials that regulate these genes, and develop an effective anti-wrinkle formula containing the active ingredients that regulate the expression of these genes. We selected two candidate genes, EDAR and BNC2, that are reportedly related to periorbital wrinkles. We investigated their functions in the skin through in vitro experiments using human skin cell lines (keratinocytes and fibroblasts). Moreover, we identified ingredients that regulate the expression of these two genes and confirmed their efficacy through in vitro experiments using the skin cell lines. Finally, we developed a formula containing these ingredients and confirmed that it enhanced dermal collagen in the 3D skin and improved fine wrinkles under the eyes more effectively than retinol in humans, when applied for 8 weeks. Our results are significant and relevant, as we have discovered a special formula for wrinkle improvement with reliable efficacy that surpasses the efficacy of retinol and does not cause side-effects such as skin irritation.
Journal Article