Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
785 result(s) for "Educational evaluation Data processing."
Sort by:
Digital expectations and experiences in education
For more than three decades, researchers, policy makers and educationalists have all harboured great expectations towards the use of technology in schools. This belief has received a hard knock after an OECD 2015 report has shown that computers do not improve pupil results: Investing heavily in school computers and classroom technology does not improve pupils' performance, and frequent use of computers in schools is more likely to be associated with lower results. Educational technology has raised false expectations! The prevailing view of educational technology has shifted. This book is an attempt to raise questions and start a debate. It presents new research relevant to a better understanding of the challenges and opportunities inherent in educational technology and strategies are discussed in relation to handling these challenges. Rather than presenting ready solutions, the book attempts to provoke debate and to contribute to a firmer grasp on reality.
The data collection toolkit
\"This book provides quick and easy tips for data collection within the classroom. Behavioral Quik-Graphs provides quick and easy tips for data collection within the classroom. Special educators, administrators, and other paraprofessionals often view data collection as time-consuming and complex, but collecting data on behaviors, academic abilities, and Individualized Education Plans (IEPs) is a crucial procedure that shows the progress of individual students. A variety of reproducible forms and tools are available for immediate use in recording and analyzing classroom data. Data collection is a critical piece of an educator's job (not just in special education) and it can be very intimidating to a teacher. This accessible book will make data collection easy with realistic vignettes, diagrams and sample forms, and explanations written in clear language.\" -- Provided by publisher.
Data for learning : building a smart education data system
Data are a crucial ingredient in any successful education system, but building and sustaining a data system are challenging tasks. Many countries around the world have spent significant resources but still struggle to accomplish a functioning Education Management Information System (EMIS). On the other hand, countries that have created successful systems are harnessing the power of data to improve education outcomes. Increasingly, EMISs are moving away from using data narrowly for counting students and schools. Instead, they use data to drive system-wide innovations, accountability, professionalization, and, most important, quality and learning. This broader use of data also benefits classroom instruction and support at schools. An effective data system ensures that education cycles, from preschool to tertiary, are aligned and that the education system is monitored so it can achieve its ultimate goal-- producing graduates able to successfully transition into the labor market and contribute to the overall national economy. This publication sheds light on challenges in building a data system and provide actionable direction on how to navigate the complex issues associated with education data for better learning outcomes and beyond. It details the key ingredients of successful data systems, including tangible examples, common pitfalls, and good practices. It is a resource for policy makers working to craft the vision and strategic road map of an EMIS, as well as a handbook to assist teams and decision makers in avoiding common mistakes.
Data Science in Education Using R
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a “learn by doing” approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Multi-dimensional education
\"This comprehensive guide to school improvement outlines the steps for identifying, collecting, analyzing, and using data as a basis for making instructional and schoolwide decisions\"-- Provided by publisher.
Innovative learning analytics for evaluating instruction : a big data roadmap to effective online learning
Innovative Learning Analytics for Evaluating Instruction covers the application of a forward-thinking research methodology that uses big data to evaluate the effectiveness of online instruction. Analysis of Patterns in Time (APT) is a practical analytic approach that finds meaningful patterns in massive data sets, capturing temporal maps of students' learning journeys by combining qualitative and quantitative methods. Offering conceptual and research overviews, design principles, historical examples, and more, this book demonstrates how APT can yield strong, easily generalizable empirical evidence through big data; help students succeed in their learning journeys; and document the extraordinary effectiveness of First Principles of Instruction. It is an ideal resource for faculty and professionals in instructional design, learning engineering, online learning, program evaluation, and research methods.
What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature
An artificial intelligence-based chatbot, ChatGPT, was launched in November 2022 and is capable of generating cohesive and informative human-like responses to user input. This rapid review of the literature aims to enrich our understanding of ChatGPT’s capabilities across subject domains, how it can be used in education, and potential issues raised by researchers during the first three months of its release (i.e., December 2022 to February 2023). A search of the relevant databases and Google Scholar yielded 50 articles for content analysis (i.e., open coding, axial coding, and selective coding). The findings of this review suggest that ChatGPT’s performance varied across subject domains, ranging from outstanding (e.g., economics) and satisfactory (e.g., programming) to unsatisfactory (e.g., mathematics). Although ChatGPT has the potential to serve as an assistant for instructors (e.g., to generate course materials and provide suggestions) and a virtual tutor for students (e.g., to answer questions and facilitate collaboration), there were challenges associated with its use (e.g., generating incorrect or fake information and bypassing plagiarism detectors). Immediate action should be taken to update the assessment methods and institutional policies in schools and universities. Instructor training and student education are also essential to respond to the impact of ChatGPT on the educational environment.