Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
935 result(s) for "Effective medium theory"
Sort by:
Breakdown of effective-medium theory by a photonic spin Hall effect
Effective-medium theory pertains to the theoretical modelling of homogenization, which aims to replace an inhomogeneous structure of subwavelength-scale constituents with a homogeneous effective medium. The effective-medium theory is fundamental to various realms, including electromagnetics and material science, since it can largely decrease the complexity in the exploration of light-matter interactions by providing simple acceptable approximation. Generally, the effective-medium theory is thought to be applicable to any all-dielectric system with deep-subwavelength constituents, under the condition that the effective medium does not have a critical angle, at which the total internal reflection occurs. Here we reveal a fundamental breakdown of the effective-medium theory that can be applied in very general conditions: showing it for deep-subwavelength all-dielectric multilayers even without a critical angle. Our finding relies on an exotic photonic spin Hall effect, which is shown to be ultrasensitive to the stacking order of deep-subwavelength dielectric layers, since the spin-orbit interaction of light is dependent on slight phase accumulations during the wave propagation. Our results indicate that the photonic spin Hall effect could provide a promising and powerful tool for measuring structural defects for all-dielectric systems even in the extreme nanometer scale.
Nonlinear Effective Dielectric Properties of Barium Strontium Titanate Composites from 300MHz to 4GHz
The nonlinear effective dielectric properties of barium strontium titanate (BST) composites at microwave frequencies are important for designing microwave phase shifters, tunable capacitors, and nonlinear transmission lines (NLTLs) for high-power microwave applications. Previous studies have reported the dielectric properties of these nonlinear materials in the linear regime at microwave frequencies or in the nonlinear regime at sub-microwave frequencies; however, a detailed assessment of the nonlinear permittivity of BST composites at microwave frequencies is lacking. In this study, we used two bias tees and a DC power supply to apply a volume-averaged bias field from 0 to 1.43 V/m to composites located in a coaxial air line to measure the nonlinear effective permittivity of BST composites with volume fractions up to 30% BST (Ba2/3Sr1/3TiO3) from 300MHz to 4GHz. The measured permittivity exhibits negligible nonlinearity and loss over these frequencies and volume fractions at the highest applied bias field. A nonlinear effective medium theory based on the Maxwell-Garnett law suggests that achieving strong nonlinearity for composites containing volume fractions from 20 to 50% of BST requires a bias field above V/m. Thus, while including BST in NLTL composites may be important for increasing dielectric breakdown strength, it may only enhance nonlinear permittivity for strong bias fields and high volume fractions.
Photothermal NDE of UD/Epoxy-Based Carbon Fibre Reinforced Laminates for Quantitative Porosity Analysis
High strength and low density make epoxy-based CFRP a highly interesting construction material for the aerospace manufacturing industry. Porosity represents an unavoidable defect and significantly weakens strength values dominated by the matrix. To evaluate the quality of safety-relevant components, non-destructive evaluation and thus the characterization of porous structures is indispensable. Pulsed thermography represents a fast, large-area and non-contact testing method that enables efficient estimation of material parameters. In this work, the authors demonstrate the quantitative estimation of porosity by pulsed thermography on a multi-axial laminate fabricated from unidirectional Prepregs for the first time. The characteristic, extensive expansion of the pores in fiber direction, is addressed by the 3D microstructure characterization of Cone beam X-ray computed tomography data. Hence, the application of effective medium theories and thus the model based porosity estimation is enabled. After the investigation of the effect of pore expansion on the effective thermal diffusivity in 3D finite element simulations, the quantitative photothermal porosity estimation on a sample with a global volume porosity of Φ = 1.51 % is demonstrated. The accuracy of this fast and non-contact method for porosity estimation with pulsed thermography ( Δ Φ = 0.63 % ) is comparable to the standard ultrasonic method. Consequently, an efficient estimation of porosity for large, complex shaped UD/Epoxy composite components is enabled.
Rectifying Nonreciprocal Perfect Absorber Based on Generalized Effective-Medium Theory for Composite Magnetic Metamaterials
In this work, we demonstrate the implementation of a nonreciprocal perfect absorber (NPA) made of composite magnetic metamaterials (MMs) consisting of an array of dielectric core loaded (DCL) ferrite rods with either hollow or dielectric cores. The NPA can be functionalized as a PA for the incident beam at a specified direction, while at the symmetric direction the absorption is very weak so that a strong reflection is observed due to the excitation of nonreciprocal magnetic surface plasmon. Interestingly, it is shown that the material loss might be beneficial to the absorption, but it will result in the degradation of nonreciprocal performance. For the delicately designed MMs, only a very small material loss is necessary and simultaneously ensures the high nonreciprocal performance of NPA. To interpret the high quality of NPA, we developed a generalized effective-medium theory for the composite MMs, which shows the direct consequence of the DCL ferrite rods with optimized core size and core permittivity. The partial wave analysis indicates that the nonreciprocal dipole resonance in DCL ferrite rod plays a crucial role in improving the nonreciprocity. The narrow band feature and the angular sensitivity make the NPA promising for the diode-like functionalities. In addition, by controlling the magnitude and orientation of bias magnetic field both the operating frequency and the nonreciprocity can be flexibly controlled, adding an additional degree of freedom. The concept proposed in this research is promising for microwave photonics and integrated photonics.
Quantum Optical Effective-Medium Theory for Layered Metamaterials at Any Angle of Incidence
The quantum optics of metamaterials starts with the question of whether the same effective-medium theories apply as in classical optics. In general, the answer is negative. For active plasmonics but also for some passive metamaterials, we show that an additional effective-medium parameter is indispensable besides the effective index, namely, the effective noise-photon distribution. Only with the extra parameter can one predict how well the quantumness of states of light is preserved in the metamaterial. The fact that the effective index alone is not always sufficient and that one additional effective parameter suffices in the quantum optics of metamaterials is both of fundamental and practical interest. Here, from a Lagrangian description of the quantum electrodynamics of media with both linear gain and loss, we compute the effective noise-photon distribution for quantum light propagation in arbitrary directions in layered metamaterials, thereby detailing and generalizing our previous work. The effective index with its direction and polarization dependence is the same as in classical effective-medium theories. As our main result, we derive both for passive and for active media how the value of the effective noise-photon distribution too depends on the polarization and propagation directions of the light. Interestingly, for s-polarized light incident on passive metamaterials, the noise-photon distribution reduces to a thermal distribution, but for p-polarized light it does not. We illustrate the robustness of our quantum optical effective-medium theory by accurate predictions both for power spectra and for balanced homodyne detection of output quantum states of the metamaterial.
A Novel Monte Carlo Method to Calculate the Thermal Conductivity in Nanoscale Thermoelectric Phononic Crystals Based on Universal Effective Medium Theory
Thermal reduction by enhancing heat-generation phonon scattering can improve thermoelectric performance. In this paper, the phonon transport subjected to internal heat generation in two-dimensional nanoscale thermoelectric phononic crystals is investigated by a novel Monte Carlo method based on the universal effective medium theory, called the MCBU method. The present approach is validated. Compared with the universal effective medium theory method, the MCBU method is easier to implement. More importantly, the deviation of the computation time between the two methods can be ignored. With almost the same time cost, the present method can accurately calculate the effective thermal conductivity of complex geometric structures that cannot be calculated by the effective medium theory. The influences of porosity, temperature, pore shape and material parameters on thermal conductivity are discussed in detail. This study offers useful methods and suggestions for fabricating these materials with heat isolation and reduction.
Nanoscale mechanical properties of 3D printed gypsum-powder-based rocks by nanoindentation and numerical modeling
Purpose Evaluating mechanical properties of simply made samples by 3D printing technology at nanoscale provides a clear path to better understand larger-scale responses of complex natural rocks. Therefore, to realize the similarity between synthetically manufactured materials and natural geomaterials, this study focused on nanoscale mechanical characterization of a 3D printed object with only two constituent components (gypsum powder and infiltrant). Design/methodology/approach The study method includes nanoindentation technique combined with numerical simulation via discrete element method (DEM). Findings Four typical load-displacement curves were identified from nanoindentation of total test points indicating a typical elastic-plastic behavior of the 3D printed gypsum rock sample. Mechanical parameters such as Young’s modulus and hardness were calculated by energy-based methods and a positive correlation was observed. The infiltrant was found to considerably be responsible for the majority of the sample nano-mechanical behavior rather than the gypsum particles, thus expected to control macroscale properties. This was decided from deconvolution and clustering of elastic modulus data. Particle flow modeling in DEM was used to simulate the nanoindentation process in a porous media yielding rock-alike mechanical behavior. Originality/value The results show a matching load-displacement response between experimental and simulation results, which verified the credibility of simulation modeling for mechanical behavior of 3D printed gypsum rock at nanoscale. Finally, differential effective medium theory was used to upscale the nanoindentation results to the macroscale mechanical properties, which provided an insight into the geomechanical modeling at multiscale.
Gain-Assisted Giant Third-Order Nonlinearity of Epsilon-Near-Zero Multilayered Metamaterials
We investigate the third-order nonlinear optical properties of epsilon-near-zero (ENZ) Au/dye-doped fused silica multilayered metamaterials in the visible spectral range for TM incident by using nonlocal effective medium theory at different incidence angles. The nonlocal response affects the permittivity of anisotropic metamaterials when the thickness of the layer cannot be much smaller than the incident wavelength. By doping pump dye gain material within the dielectric layer to compensate for the metal loss, the imaginary part of the effective permittivity is reduced to 10−4, and the optical nonlinear refractive index and nonlinear absorption coefficient are enhanced. The real and imaginary parts of the permittivity are simultaneously minimized when the central emission wavelength of the gain material is close to the ENZ wavelength, and the nonlinear refraction coefficient reaches the order of 10−5 cm2/W, which is five orders of magnitude larger than that of the nonlinear response of the metamaterial without the gain medium. Our results demonstrate that a smaller imaginary part of the permittivity can be obtained by doping gain materials within the dielectric layer; it offers the promise of designing metamaterials with large nonlinearity at arbitrary wavelengths.
Differential Effective Medium Theory for the Chloride Diffusivity of Concrete
A differential effective medium scheme for the chloride diffusivity of concrete with spheroidal aggregate particles is presented. By taking the interfacial transition zone (ITZ)-coated aggregate particle as an \"equivalent aggregate particle,\" the three-phase concrete is reduced to a two-phase composite material. The differential effective medium theory is then adopted to derive an analytical approximation for the chloride diffusivity of concrete. After the validity of the analytical approximation is verified with two sets of experimental results, the effects of various key factors on the chloride diffusivity of concrete are evaluated quantitatively. Numerical results indicate that the chloride diffusivity of concrete increases with an increase in chloride diffusivity and thickness of ITZ, but decreases by increasing the aggregate aspect ratio and maximum aggregate diameter. It is also found that the aggregate gradation has a significant influence on the chloride diffusivity of concrete.
Charge pattern matching as a 'fuzzy' mode of molecular recognition for the functional phase separations of intrinsically disordered proteins
Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ( φ 1 , φ 2 ) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their φ 1 φ 2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, 'fuzzy' mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity ϵ r ( φ ) that depends on IDP volume fraction φ = φ 1 + φ 2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for ϵ r ( φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.