Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
260 result(s) for "Elaeagnus angustifolia"
Sort by:
Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey
The oleaster (Elaeagnus angustifolia L.) plant grown in three different locations in Nevşehir, Turkey was analyzed to determine its phenolic component profile, total phenolic compound, total carotenoid, total flavonoid, and antioxidant capacity values. Ultrasonic extraction of the oleaster’s flour, shell, core, flower, and leaf parts was carried out under solvent and acidic hydrolysis conditions using eight different polarity solvents (water, methanol, ethanol, acetone, ethyl acetate, butanol, petroleum ether, and hexane). The phenolic component profiles were determined using high-performance liquid chromatography with diode array detector (HPLC–DAD), and the main phenolic components in the oleaster samples were gallic acid, catechin, and their derivatives. At the same time, antioxidant properties of oleaster samples were evaluated by Folin–Ciocalteu (FC), ABTS, FRAP, DPPH, and CHROMAC methods. Various parts of oleaster, whose phenolic component content was determined in this study, are thought to be a natural source that can be used against degenerative diseases in future studies.
Green Synthesis and Characterization of Silver Nanoparticles Using Elaeagnus angustifolia Bark Extract and Study of Its Antibacterial Effect
Nowadays, many chemical methods have been proposed for the synthesis of silver nanoparticles, but green synthesis has received more attention due to its low cost and environmental friendliness. In the present study, the synthesis of green silver nanoparticles (AgNPs) using Elaeagnus angustifolia (E. angustifolia) bark extract and investigation of antibacterial properties has been reported. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDS) and field emission scanning electron microscopy (FESEM) techniques were used for characterization of the bisynthesized silver nanoparticles. The formation of silver nanoparticles was determined by changing the color of the sample to dark brown and the maximum adsorption at 424 nm. Also the FESEM results indicate that synthesized nanoparticles were homogeneous and spherical morphology with a size of 65–90 nm. The minimum inhibitory concentration (MIC) values for E. coli, S. aureus and K. pneumoniae were 1.5, 2.5 and 20 µg/ml, respectively. In addition, the minimum bactericidal concentration (MBC) values of E. coli, S. aureus and K. pneumoniae were 2.5, 5 and 20 µg/ml, respectively. Therefore; the nanoparticles reduced by extract of E. angustifolia bark extract had antibacterial properties on the strains of examined Gram-positive and Gram-negative bacteria.
Co-fermentation Approach of Fructose and Glucose to Ethanol from Chinese Elaeagnus angustifolia Fruit (EAF)
The soluble and fermentable carbohydrate contents was detected over 47% of glucose and fructose in Chinese Elaeagnus angustifolia fruit powder (EAF), being over 47 wt% sugar content more than that of grape. Ethanol was therefore fermented directly from EAF, and different submerged fermentation modes were comparatively employed to optimize ethanol harvest. The results indicated that glucose has certain competitive inhibition on fructose bio-utilization, as well as the EAF solid residue involved fermentation mode also hindered the fermented-ethanol titer. Pectinase addition and in situ hydrolysis seemed to assist somewhat the fermentation. The water-solute fermentation mode is preferable, and glucose and fructose components were completely consumed and converted to 80.96 g/L ethanol at 87.6% ethanol yield even under tannin and pectin inhibition. The fermentation result could provide some experimental data and an approach to not only new biomass resource explores of bioethanol and alcohol beverage production, but also the technological development on valorization commercials of EAF in global draught areas.
Natural biochemical and morphological diversity of oleaster (Elaeagnus angustifolia L.) genotypes from the west of Iran: applicable for conservation, domestication, and breeding
Oleaster tree ( Elaeagnus angustifolia L.) possesses many nutritional, pharmaceutical and ecological benefits. Morphological and biochemical evaluations of wild oleaster genotypes are pivotal for its conservation, domestication, and breeding programs. In this research, 32 morphological and biochemical traits of oleaster genotypes collected from Iran were evaluated. These genotypes represented a great variety in terms of the evaluated traits. The highest coefficients of variation were noticed on leaf weight (131.96%), fruit flesh weight (54.6%), fruit skin weight (46.92%), fruit flavonoid (42.58%), and fruit weight (42.09%), respectively. Fruit weight varied from 0.26 to 2.84 g. Most of the fruits (41.3%) were red, and most of them (69.7%) had an astringent-sweet taste. The highest mean fruit weight (2.3 g), phenol content (43.06 mg GA/g FW), flavonoid content (8.14 mg CA/g FW), and total soluble solids (26.6°Bx) were for Kuleh sareh, Sarab qamish, Sheykh Vajim and Mamukh genotypes, respectively. Significant positive and negative correlations were observed between the measured traits. Principle component analysis (PCA) grouped the traits into 11 components which accounted for 73.8% of the total variance between genotypes. The weight, width, flesh weight, length, seed weight, seed length, and skin weight of the fruit exhibited the highest factor coefficients in PC1 and were therefore considered as the most influential traits responsible for the segregation of oleaster genotypes. Cluster analysis grouped the genotypes into three main clusters, although the genetic distances of the genotypes were not in accordance with their geographical distances. Based on the breeding aims, the superior genotypes can be used in future programs.
The Mechanism by Which Umbrella-Shaped Ratchet Trichomes on the Elaeagnus angustifolia Leaf Surface Collect Water and Reflect Light
Leaves are essential for plants, enabling photosynthesis and transpiration. In arid regions, water availability limits plant growth. Some plants, like Elaeagnus angustifolia, a sandy sub-tree species widely distributed in arid and semi-arid regions, have unique leaf structures to reduce water loss and solar radiation. Here, we describe the leaves of Elaeagnus angustifolia L., with special functioning trichomes. Through leaf submicroscopic structure observation, in situ water collection experiments, photosynthesis measurements, and reflection spectrum analysis, we investigated E. angustifolia leaves, focusing on their functioning trichomes. These trichomes capture water vapor, reflect UV and NIR light, and possess a 3D interface structure composed of 1D and 2D structures. The 1D conical structure captures water droplets, which are then gathered by the radial conical structure and guided towards the stomata through wedge-shaped grooves on the 2D umbrella structure. The trichomes also reflect sunlight, with micropapillae reflecting UV light and the umbrella structure reflecting NIR light. These mechanisms reduce leaf temperature, respiration, and water transpiration, protecting against solar radiation damage. This study provides insights into water collection and light-reflection mechanisms, revealing adaptive strategies of plants with large leaves in arid regions.
Extraction of Bound Polyphenols from Elaeagnus angustifolia L. by Ultrasonic-Assisted Enzymatic Hydrolysis and Evaluation of Its Antioxidant Activity In Vitro
Herein, Elaeagnus angustifolia L. was utilized as a raw material to extract bound polyphenols using an ultrasound-assisted complex enzyme method for the first time. The effects of enzyme ratio, ultrasonic time, liquid-to-solid ratio, and pH value on the bound polyphenol yield were investigated using single-factor experiments. The key parameters were subsequently optimized using the Box–Behnken design. The optimal conditions identified were as follows: enzyme ratio (α-amylase/cellulase = 5:1 mg/mg), ultrasonic time of 50 min, liquid-to-solid ratio of 12:1 mL/g, and pH value of 5. Under these conditions, the bound polyphenol yield was measured at 13.970 ± 0.3 mg/g. A total of 27 phenolic compounds were identified using ultrahigh-performance liquid chromatography–ion mobility quadrupole time-of-flight mass spectrometry (UPLC–IMS-QTOF-MS), including two coumarins, five lignins, 10 polyphenols, nine flavonoids, and one tannin, and specifically containing Angeloylgomisin Q, Yakuchinone A, Furosin, 6-Dehydrogingerdione, and 4′-Methylpinosylvin, and so on. Antioxidant activity was assessed using the 1,1-diphenyl-2-picryl-hydrazil (DPPH) and 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) methods, revealing significant antioxidant potential. This study introduced a novel extraction process for bound polyphenols from E. angustifolia L. and provided the first qualitative analysis of bound polyphenols in this species, establishing a scientific foundation for its development and application in the functional food, medicine, and cosmetics industries.
The Effects of Elaeagnus angustifolia L. on the Thyroid-Stimulating Hormone, Dehydroepiandrosterone-Sulfate, Prolactin and Cortisol Levels in Post-Menopausal Women: A Double-Blind, Randomized, and Placebo-Controlled Study
Menopause is the last menstrual period associated with a decline in ovarian steroid secretion and follicular loss. Hormone profile changes during menopause include a decrease in the production of estrogen, dehydroepiandrosterone (DHEA), and prolactin (PRL), and an increase in thyroid-stimulating hormone (TSH) and cortisol. Herbal medicines are considered as alternatives to hormone therapy. The studies on postmenopausal women have shown that Elaeagnus angustifolia L. (called “Senjed” in Persian) has some efficacy in improving sex hormone and lipid profiles, joint pain, and cardiovascular function, as the decrease in luteinizing hormone, low-density lipoprotein, and heart rate was significant. The aim of the present study was to evaluate the effects of E. angustifolia on TSH, DHEA-S, PRL, and cortisol levels and their ratios in postmenopausal women. It is assumed that the eventual effects of hormones on the brain and other tissues are determined by the balance between interdependent hormones. In the present randomized double-blinded placebo-controlled trial ( https://en.irct.ir/search/result?query=IRCT20170227032795N4 ), fifty-eight postmenopausal women were randomly assigned to one of two medicinal herb (15 g of the whole E. angustifolia fruit powder) and placebo (7.5 g isomalt + 7.5 g cornstarch) groups. After 10 weeks of the treatment, the serum levels of TSH, DHEA-S, PRL, cortisol hormones, and their ratios were measured. The increase in the TSH, and cortisol levels, and cortisol/DHEA-S ratio and the decrease in prolactin and DHEA-S and the PRL/TSH, PRL/cortisol, and DHEA-S/TSH ratios after E. angustifolia consumption were significant only based on within-group but not on the between-group analysis. Based on between-group analyses, the changes in the hormone profile were not significant in the placebo group. According to Iranian tradition and folklore, E. angustifolia fruit is a symbol of female fertility. Therefore, its consumption is highly recommended to maintain health in the elderly, especially women. However, the observed outcomes about the effect of E. angustifolia on menopause were not completely in line with the Iranian folklore. E. angustifolia consumption did not significantly affect the hormone profile and ratios at the end of the ten-week trial, possibly due to the small sample size, short time, and the fact that our participants were postmenopausal women.
De novo assembly provides new insights into the evolution of Elaeagnus angustifolia L
Background Elaeagnus angustifolia L. is a deciduous tree in the family Elaeagnaceae. It is widely used to study abiotic stress tolerance in plants and to improve desertification-affected land because of its ability to withstand diverse types of environmental stress, such as drought, salt, cold, and wind. However, no studies have examined the mechanisms underlying the resistance of E. angustifolia to environmental stress and its adaptive evolution. Methods Here, we used PacBio, Hi-C, resequencing, and RNA-seq to construct the genome and transcriptome of E. angustifolia and explore its adaptive evolution. Results The reconstructed genome of E. angustifolia was 526.80 Mb, with a contig N50 of 12.60 Mb and estimated divergence time of 84.24 Mya. Gene family expansion and resequencing analyses showed that the evolution of E. angustifolia was closely related to environmental conditions. After exposure to salt stress, GO pathway analysis showed that new genes identified from the transcriptome were related to ATP-binding, metal ion binding, and nucleic acid binding. Conclusion The genome sequence of E. angustifolia could be used for comparative genomic analyses of Elaeagnaceae family members and could help elucidate the mechanisms underlying the response of E. angustifolia to drought, salt, cold, and wind stress. Generally, these results provide new insights that could be used to improve desertification-affected land.
Adaptive growth response of exotic Elaeagnus angustifolia L. to indigenous saline soil and its beneficial effects on the soil system in the Yellow River Delta, China
Key message Our manuscript showed that Elaeagnus angustifolia L. can be introduced to the Yellow River Delta of China and planting E. angustifolia was beneficial effects on the soil system. The saline soil of the Yellow River Delta of China is not suitable for the growth of crop and afforestation seedlings due to high salt content, high underground water level, and deficiencies in organic matter, nitrogen and phosphorus, which limits urban road greening around the Yellow River Delta. Elaeagnus angustifolia L. ( E. angustifolia ) is a member of the Elaeagnaceae family, which is a deciduous shrub or small tree. Due to its good resistance, E. angustifolia has been planted widely in the western region of China, and it has been used for wind breaking, landscaping and sand stabilization. Furthermore, E. angustifolia seedlings were introduced to the Yellow River Delta due to its strong stress and adaptive growth response, which were studied in 2014 and 2015. The results revealed that the seedlings of E. angustifolia grew well with high relative growth rates, big crowns, thick basal diameter, thick diameter at the breast height, and many branches, especially during the second year. Planting E. angustifolia on the Yellow River Delta significantly decreased its salt content, and increased its content of organic matter, nitrogen and phosphorus, as well as the number of fungus, bacteria, salt-tolerant bacteria, actinomycetes and salt-tolerant actinomycetes, especially after planting E. angustifolia for two consecutive years. In conclusion, E. angustifolia seedlings can grow well in the saline soil of the Yellow River Delta with a large biomass. In turn, planting E. angustifolia could improve saline soil properties. Hence, E. angustifolia can be a potential local greening tree species.
Models combining multiple scales of inference capture hydrologic and climatic drivers of riparian tree distributions
Predicting species geographic distributions is key to managing invasive species, conserving biodiversity, and understanding species' environmental requirements. Species distribution models (SDMs) commonly focus on climatic predictors, but other environmental factors can also be essential, particularly for species with specialized habitats defined by hydrologic, topographic, or edaphic conditions (e.g., riparian, wetland, alpine, coastal, serpentine). Here, we demonstrate a novel approach for capturing strong effects of both hydrologic and climatic predictors in SDMs for riparian plants, by merging analyses targeted at environmental drivers within riparian ecosystems and across the western USA (3.8 × 106 km2). We developed presence‐background SDMs from five algorithms for three invasive riparian trees (Tamarix ramossisima/chinensis [saltcedar], Elaeagnus angustifolia [Russian olive], and Ulmus pumila [Siberian elm]) and three native Populus spp. (cottonwoods). We used separate background datasets to develop models with different spatial scales of inference: (1) spatially filtered random points to represent available habitat across the study area and (2) target‐group points from Salix (willow) occurrences to represent available riparian habitat. Random‐background models captured hydrologic drivers of riparian tree distributions relative to the largely upland western USA, whereas Salix‐background models captured climatic drivers within the context of riparian ecosystems. Combining predictions from the two backgrounds identified hydrologically suitable habitats within climatically suitable regions, resulting in fewer false “absences” than either background alone, improving predictions over previous SDMs, and providing more complete information to guide management decisions. Surprisingly, the predicted habitat for U. pumila, a newly recognized riparian invader, was as or more extensive than Populus deltoides/fremontii, T. ramossisima/chinensis, and E. angustifolia, the most common riparian tree complexes in the western USA. Watersheds constituting 20% of U. pumila predicted habitat contained no occurrence records, indicating high risk of future and unrecognized invasions. Combining models from random and ecosystem‐specific target‐group backgrounds may improve SDMs for species from many specialized habitats, providing a method to link predicted distributions to localized geographic features while capturing broad‐scale climatic requirements.