Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
105 result(s) for "Elastic plates and shells."
Sort by:
Aeroelastic Vibrations and Stability of Plates and Shells
Back-action of aerodynamics onto structures such as wings cause vibrations and may resonantly couple to them, thus causing instabilities (flutter) and endangering the whole structure. By careful choices of geometry, materials and damping mechanisms, hazardous effects on wind engines, planes, turbines and cars can be avoided. Besides an introduction into the problem of flutter, new formulations of flutter problems are given as well as a treatise of supersonic flutter and of a whole range of mechanical effects. Numerical and analytical methods to study them are developed and applied to the analysis of new classes of flutter problems for plates and shallow shells of arbitrary plane form.
Vibration and Nonlinear Dynamics of Plates and Shells
This e-book focuses on the vibrational and nonlinear aspects of plate and shell structure dynamics by applying the finite element model. Specifically, shell finite elements employed in the computational studies included in this book are the mixed formulation based lower order flat triangular shell finite elements. Topics in the book are covered over nine chapters, including the theoretical background for the vibration analysis of plates and shells, vibration analysis of plate structures, shells with single curvature, shells with double curvatures, and box structures (single-cell and double-cell) and the theoretical development for the nonlinear dynamic analysis of plate and shell structures. In addition to presenting the steps in the derivations of the consistent element stiffness and mass matrices, constitutive relations of elastic materials and elasto-plastic materials with isotropic strain hardening, yield criterion, return mapping, configuration and stress updating strategies, and numerical algorithms are presented and discussed. The book is a suitable reference for advanced undergraduates and post-graduate level engineering students, research engineers, and scientists working in the field of applied physics and engineering.
Plates and shells for smart structures
\"Plates and Shells for Smart Structures firstly gives an overview of classical plate and shell theories for piezoelectric elasticity, demonstrating their limitations in static and dynamic analysis with a number of example problems. The authors then go on to explain how these limitations can be overcome with the use of the more advanced models that have been developed in recent years; introducing theories able to consider electromechanical couplings as well as those that provide appropriate interface continuity conditions for both electrical and mechanical variables. They provide both analytical and finite element solutions, thus enabling the reader to compare the strong and weak solutions to problems.Plates and Shells for Smart Structures is accompanied by dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own\"--
A two-step perturbation method in nonlinear analysis of beams, plates and shells
The capability to predict the nonlinear response of beams, plates and shells when subjected to thermal and mechanical loads is of prime interest to structural analysis. In fact, many structures are subjected to high load levels that may result in nonlinear load-deflection relationships due to large deformations. One of the important problems deserving special attention is the study of their nonlinear response to large deflection, postbuckling and nonlinear vibration. A two-step perturbation method is firstly proposed by Shen and Zhang (1988) for postbuckling analysis of isotropic plates. This approach gives parametrical analytical expressions of the variables in the postbuckling range and has been generalized to other plate postbuckling situations. This approach is then successfully used in solving many nonlinear bending, postbuckling, and nonlinear vibration problems of composite laminated plates and shells, in particular for some difficult tasks, for example, shear deformable plates with four free edges resting on elastic foundations, contact postbuckling of laminated plates and shells, nonlinear vibration of anisotropic cylindrical shells. This approach may be found its more extensive applications in nonlinear analysis of nano-scale structures.
Introduction to the mathematical theory of vibrations of elastic plates
This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices.
Asymptotic methods in the theory of plates with mixed boundary conditions
Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions comprehensively covers the theoretical background of asymptotic approaches and their use in solving mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions. The first part of this book introduces the theory and application of asymptotic methods and includes a series of approaches that have been omitted or not rigorously treated in the existing literature. These lesser known approaches include the method of summation and construction of the asymptotically equivalent functions, methods of small and large delta, and the homotopy perturbations method. The second part of the book contains original results devoted to the solution of the mixed problems of the theory of plates, including statics, dynamics and stability of the studied objects. In addition, the applicability of the approaches presented to other related linear or nonlinear problems is addressed. Key features: • Includes analytical solving of mixed boundary value problems • Introduces modern asymptotic and summation procedures • Presents asymptotic approaches for nonlinear dynamics of rods, beams and plates • Covers statics, dynamics and stability of plates with mixed boundary conditions • Explains links between the Adomian and homotopy perturbation approaches Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions is a comprehensive reference for researchers and practitioners working in the field of Mechanics of Solids and Mechanical Engineering, and is also a valuable resource for graduate and postgraduate students from Civil and Mechanical Engineering.
Homogenization of Heterogeneous Thin and Thick Plates
This book gives new insight on plate models in the linear elasticity framework tacking into account heterogeneities and thickness effects. It is targeted to graduate students how want to discover plate models but deals also with latest developments on higher order models. Plates models are both an ancient matter and a still active field of research. First attempts date back to the beginning of the 19th century with Sophie Germain. Very efficient models have been suggested for homogeneous and isotropic plates by Love (1888) for thin plates and Reissner (1945) for thick plates. However, the extension of such models to more general situations --such as laminated plates with highly anisotropic layers-- and periodic plates --such as honeycomb sandwich panels-- raised a number of difficulties. An extremely wide literature is accessible on these questions, from very simplistic approaches, which are very limited, to extremely elaborated mathematical theories, which might refrain the beginner. Starting from continuum mechanics concepts, this book introduces plate models of progressive complexity and tackles rigorously the influence of the thickness of the plate and of the heterogeneity. It provides also latest research results. The major part of the book deals with a new theory which is the extension to general situations of the well established Reissner-Mindlin theory. These results are completely new and give a new insight to some aspects of plate theories which were controversial till recently.