Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,512 result(s) for "Electric power systems Computer simulation."
Sort by:
Power systems analysis illustrated with MATLABھ and ETAPھ
\"Electrical power is harnessed using several energy sources, including: coal, hydel, nuclear, solar, and wind. Generated power is needed to be transferred over long distances to support load requirements of customers viz: residential, industrial, and commercial. This necessitates proper design and analysis of Power Systems to efficiently control the power flow from one point to the other without delay, disturbance, or interference. Ideal for utility and power system designer professionals and students, this book is richly illustrated with MATLAB and etap (Electrical Transient Analysis Program) to succinctly illustrate concepts throughout, and includes examples, case studies, and problems\"-- Provided by publisher.
Passive Macromodeling
Offers an overview of state of the art passive macromodeling techniques with an emphasis on black-box approaches This book offers coverage of developments in linear macromodeling, with a focus on effective, proven methods. After starting with a definition of the fundamental properties that must characterize models of physical systems, the authors discuss several prominent passive macromodeling algorithms for lumped and distributed systems and compare them under accuracy, efficiency, and robustness standpoints. The book includes chapters with standard background material (such as linear time-invariant circuits and systems, basic discretization of field equations, state-space systems), as well as appendices collecting basic facts from linear algebra, optimization templates, and signals and transforms. The text also covers more technical and advanced topics, intended for the specialist, which may be skipped at first reading. * Provides coverage of black-box passive macromodeling, an approach developed by the authors * Elaborates on main concepts and results in a mathematically precise way using easy-to-understand language * Illustrates macromodeling concepts through dedicated examples * Includes a comprehensive set of end-of-chapter problems and exercises Passive Macromodeling: Theory and Applications serves as a reference for senior or graduate level courses in electrical engineering programs, and to engineers in the fields of numerical modeling, simulation, design, and optimization of electrical/electronic systems. Stefano Grivet-Talocia, PhD, is an Associate Professor of Circuit Theory at the Politecnico di Torino in Turin, Italy, and President of IdemWorks. Dr. Grivet-Talocia is author of over 150 technical papers published in international journals and conference proceedings. He invented several algorithms in the area of passive macromodeling, making them available through IdemWorks. Bjørn Gustavsen, PhD, is a Chief Research Scientist in Energy Systems at SINTEF Energy Research in Trondheim, Norway. More than ten years ago, Dr. Gustavsen developed the original version of the vector fitting method with Prof. Semlyen at the University of Toronto. The vector fitting method is one of the most widespread approaches for model extraction. Dr. Gustavsen is also an IEEE fellow.
Passive macromodeling
Offers an overview of state of the art passive macromodeling techniques with an emphasis on black-box approachesThis book offers coverage of developments in linear macromodeling, with a focus on effective, proven methods. After starting with a definition of the fundamental properties that must characterize models of physical systems, the authors discuss several prominent passive macromodeling algorithms for lumped and distributed systems and compare them under accuracy, efficiency, and robustness standpoints. The book includes chapters with standard background material (such as linear time-invariant circuits and systems, basic discretization of field equations, state-space systems), as well as appendices collecting basic facts from linear algebra, optimization templates, and signals and transforms. The text also covers more technical and advanced topics, intended for the specialist, which may be skipped at first reading. Provides coverage of black-box passive macromodeling, an approach developed by the authors Elaborates on main concepts and results in a mathematically precise way using easy-to-understand language Illustrates macromodeling concepts through dedicated examples Includes a comprehensive set of end-of-chapter problems and exercises Passive Macromodeling: Theory and Applications serves as a reference for senior or graduate level courses in electrical engineering programs, and to engineers in the fields of numerical modeling, simulation, design, and optimization of electrical/electronic systems.Stefano Grivet-Talocia, PhD, is an Associate Professor of Circuit Theory at the Politecnico di Torino in Turin, Italy, and President of IdemWorks. Dr. Grivet-Talocia is author of over 150 technical papers published in international journals and conference proceedings. He invented several algorithms in the area of passive macromodeling, making them available through IdemWorks.Bjørn Gustavsen, PhD, is a Chief Research Scientist in Energy Systems at SINTEF Energy Research in Trondheim, Norway. More than ten years ago, Dr. Gustavsen developed the original version of the vector fitting method with Prof. Semlyen at the University of Toronto. The vector fitting method is one of the most widespread approaches for model extraction. Dr. Gustavsen is also an IEEE fellow.
Inertia location and slow network modes determine disturbance propagation in large-scale power grids
Conventional generators in power grids are steadily substituted with new renewable sources of electric power. The latter are connected to the grid via inverters and as such have little, if any rotational inertia. The resulting reduction of total inertia raises important issues of power grid stability, especially over short-time scales. With the motivation in mind to investigate how inertia reduction influences the transient dynamics following a fault in a large-scale electric power grid, we have constructed a model of the high voltage synchronous grid of continental Europe. To assess grid stability and resilience against disturbance, we numerically investigate frequency deviations as well as rates of change of frequency (RoCoF) following abrupt power losses. The magnitude of RoCoF's and frequency deviations strongly depend on the fault location, and we find the largest effects for faults located on the support of the slowest mode-the Fiedler mode-of the network Laplacian matrix. This mode essentially vanishes over Belgium, Eastern France, Western Germany, northern Italy and Switzerland. Buses inside these regions are only weakly affected by faults occuring outside. Conversely, faults inside these regions have only a local effect and disturb only weakly outside buses. Following this observation, we reduce rotational inertia through three different procedures by either (i) reducing inertia on the Fiedler mode, (ii) reducing inertia homogeneously and (iii) reducing inertia outside the Fiedler mode. We find that procedure (iii) has little effect on disturbance propagation, while procedure (i) leads to the strongest increase of RoCoF and frequency deviations. This shows that, beyond absorbing frequency disturbances following nearby faults, inertia also mitigates frequency disturbances from distant power losses, provided both the fault and the inertia are located on the support of the slowest modes of the grid Laplacian. These results for our model of the European transmission grid are corroborated by numerical investigations on the ERCOT transmission grid.
Assessing DER network cybersecurity defences in a power‐communication co‐simulation environment
Increasing penetrations of interoperable distributed energy resources (DER) in the electric power system are expanding the power system attack surface. Maloperation or malicious control of DER equipment can now cause substantial disturbances to grid operations. Fortunately, many options exist to defend and limit adversary impact on these newly‐created DER communication networks, which typically traverse the public internet. However, implementing these security features will increase communication latency, thereby adversely impacting real‐time DER grid support service effectiveness. In this work, a collection of software tools called SCEPTRE was used to create a co‐simulation environment where SunSpec‐compliant photovoltaic inverters were deployed as virtual machines and interconnected to simulated communication network equipment. Network segmentation, encryption, and moving target defence security features were deployed on the control network to evaluate their influence on cybersecurity metrics and power system performance. The results indicated that adding these security features did not impact DER‐based grid control systems but improved the cybersecurity posture of the network when implemented appropriately.
Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms
Purpose The increase in plug-in electric vehicles (PEVs) is likely to see a noteworthy impact on the distribution system due to high electric power consumption during charging and uncertainty in charging behavior. To address this problem, the present work mainly focuses on optimal integration of distributed generators (DG) into radial distribution systems in the presence of PEV loads with their charging behavior under daily load pattern including load models by considering the daily (24 h) power loss and voltage improvement of the system as objectives for better system performance. Design/methodology/approach To achieve the desired outcomes, an efficient weighted factor multi-objective function is modeled. Particle Swarm Optimization (PSO) and Butterfly Optimization (BO) algorithms are selected and implemented to minimize the objectives of the system. A repetitive backward-forward sweep-based load flow has been introduced to calculate the daily power loss and bus voltages of the radial distribution system. The simulations are carried out using MATLAB software. Findings The simulation outcomes reveal that the proposed approach definitely improved the system performance in all aspects. Among PSO and BO, BO is comparatively successful in achieving the desired objectives. Originality/value The main contribution of this paper is the formulation of the multi-objective function that can address daily active power loss and voltage deviation under 24-h load pattern including grouping of residential, industrial and commercial loads. Introduction of repetitive backward-forward sweep-based load flow and the modeling of PEV load with two different charging scenarios.
Transaction decision optimization of new electricity market based on virtual power plant participation and Stackelberg game
This study intends to optimize the trading decision-making strategy of the new electricity market with virtual power plants and improve the transmission efficiency of electricity resources. The current problems in China’s power market are analyzed from the perspective of virtual power plants, highlighting the necessity of reforming the power industry. The generation scheduling strategy is optimized in light of the market transaction decision based on the elemental power contract to enhance the effective transfer of power resources in virtual power plants. Ultimately, value distribution is balanced through virtual power plants to maximize the economic benefits. After 4 hours of simulation, the experimental data shows that 75 MWh of electricity is generated by the thermal power system, 100 MWh by the wind power system, and 200 MWh by the dispatchable load system. Comparatively, the new electricity market transaction model based on the virtual power plant has an actual generation capacity of 250MWh. In addition, the daily load power of the models of thermal power generation, wind power generation, and virtual power plant reported here are compared and analyzed. For a 4-hour simulation run, the thermal power generation system can provide 600 MW of load power, the wind power generation system can provide 730 MW of load power, and the virtual power plant-based power generation system can provide up to 1200 MW of load power. Therefore, the power generation performance of the model reported here is better than other power models. This study can potentially encourage a revised transaction model for the power industry market.
Designing a new integrated control solution for electric power steering systems based on a combination of nonlinear techniques
An EPS system is used to improve the stability and safety of the car when steering while also simplifying the steering process. This article introduces a novel control solution for the EPS system called BSSMCPID. This algorithm combines two nonlinear techniques, BS and SMC, with the input signal corrected by a PID technique. This algorithm provides three new contributions compared to existing algorithms: reducing system errors and eliminating phase differences, ensuring stability even when exposed to external disturbances, and reducing power consumption. The system’s stability is evaluated according to the Lyapunov criterion, while the algorithm’s performance is evaluated based on numerical simulation results. According to the article findings, the RMS error of the steering column angle and steering motor angle values (controlled objects) is approximately zero, and the RMS error of the steering column speed and steering motor speed is about 0.01 rad/s, which is much lower than the results obtained with traditional BS and PID controllers. When the EPS system is controlled by the integrated nonlinear method proposed in this work, the output values always closely follow the reference values with negligible errors under all investigated conditions. Additionally, power steering performance increases as speed decreases or driver torque increases, which follows the ideal assisted power steering curve. In general, the responsiveness and stability of the system are always ensured when applying this algorithm.
Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory
The design of reliable power filters that mitigate current and voltage harmonics to meet the power quality requirements of the utility grid is a major requirement of present-day power systems. In this paper, a detailed systematic approach to design a shunt active power filter (SAPF) for power quality enhancement is discussed. A proportional–integral (PI) controller is adopted to regulate the DC-link voltage. The instantaneous reactive power theory is employed for the reference current’s extraction. Hysteresis current control is used to obtain the gate pulses that control the voltage source inverter (VSI) switches. The detailed SAPF is developed and simulated for balanced nonlinear loads and unbalanced nonlinear loads using MATLAB/Simulink. The simulation results indicate that the proposed filter can minimize the harmonic distortion to a level below that deployed by the Institute of Electrical and Electronics Engineers (IEEE) standards.