Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
91,529 result(s) for "Electrical engineering. Electrical power engineering"
Sort by:
A metal-free organic–inorganic aqueous flow battery
Flow batteries, in which the electro-active components are held in fluid form external to the battery itself, are attractive as a potential means for regulating the output of intermittent renewable sources of electricity; an aqueous flow battery based on inexpensive commodity chemicals is now reported that also has the virtue of enabling further improvement of battery performance through organic chemical design. Go with the flow batteries Flow batteries differ from the conventional type in that the electro-active components of flow batteries are held in fluid form external to the battery itself, enabling such systems to store arbitrarily large amounts of energy. Flow batteries are therefore attractive as a potential means for regulating the output of intermittent sources of electricity such as wind or solar power. But an important limitation of most such systems is the abundance and cost of the electro-active materials. To overcome this limitation, Brian Huskinson and colleagues have developed an aqueous flow battery on the basis of inexpensive, non-metallic commodity chemicals, with the added advantage of enabling the tuning of key battery properties through chemical design. As the fraction of electricity generation from intermittent renewable sources—such as solar or wind—grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output 1 , 2 . In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form 3 , 4 , 5 . Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts 6 , 7 . Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br 2 /Br − redox couple, yields a peak galvanic power density exceeding 0.6 W cm −2 at 1.3 A cm −2 . Cycling of this quinone–bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals 8 . This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.
Electric energy : an introduction
\"Along with the standard topics of power electronics and electromechanical conversion, this popular text covers energy resources, power plants, environmental impacts of power generation, power system operation, renewable energy, and electrical safety. Focusing on issues encountered daily in practice, the author includes examples based on real systems and data. Now in color, this third edition offers new and expanded coverage on the failure modes of nuclear power plants, interface and integration issues, stray voltage and impulse shocks, the circuits in wind and solar systems, and smart grid technology\"-- Provided by publisher.
Secondary control of microgrids based on distributed cooperative control of multi-agent systems
This study proposes a secondary voltage and frequency control scheme based on the distributed cooperative control of multi-agent systems. The proposed secondary control is implemented through a communication network with one-way communication links. The required communication network is modelled by a directed graph (digraph). The proposed secondary control is fully distributed such that each distributed generator only requires its own information and the information of its neighbours on the communication digraph. Thus, the requirements for a central controller and complex communication network are obviated, and the system reliability is improved. The simulation results verify the effectiveness of the proposed secondary control for a microgrid test system.
Electric power distribution handbook
\"Preface In industrialized countries, distribution systems deliver electricity literally everywhere, taking power generated at many locations and delivering it to end users. Generation, transmission, and distribution--of these big three components of the electricity infrastructure, the distribution system gets the least attention. Yet, it is often the most critical component in terms of its effect on reliability and quality of service, cost of electricity, and aesthetic (mainly visual) impacts on society. Like much of the electric utility industry, several political, economic, and technical changes are pressuring the way distribution systems are built and operated. Deregulation has increased pressures on electric power utilities to cut costs and has focused emphasis on reliability and quality of electric service. The great fear of deregulation is that service will suffer because of cost cutting. Regulators and utility consumers are paying considerable attention to reliability and quality. Another change that is brewing is the introduction of distributed generation on the distribution system. Generators at the distribution level can cause problems (and have benefits if properly applied). New loads such as plug-in vehicles may be on the horizon. Customers are pressing for lower costs, better reliability, and less visual impact from utility distribution systems. Deregulation and technical changes increase the need by utility engineers for better information. This book helps fill some of those needs in the area of electric distribution systems. The first few chapters of the book focus on equipment-oriented information and applications such as choosing transformer connections, sizing and placing capacitors, and setting regulators\"-- Provided by publisher.
Comprehensive review of generation and transmission expansion planning
Investment on generation system and transmission network is an important issue in power systems, and investment reversibility closely depends on performing an optimal planning. In this regard, generation expansion planning (GEP) and transmission expansion planning (TEP) have been presented by researchers to manage an optimal planning on generation and transmission systems. In recent years, a large number of research works have been carried out on GEP and TEP. These problems have been investigated with different views, methods, constraints and objectives. The evaluation of researches in these fields and categorising their different aspects are necessary to manage further works. This study presents a comprehensive review of GEP and TEP problems from different aspects and views such as modelling, solving methods, reliability, distributed generation, electricity market, uncertainties, line congestion, reactive power planning, demand-side management and so on. The review results provide a comprehensive background to find out further ideas in these fields.
Power electronics and control techniques for maximum energy harvesting in photovoltaic systems
\"Preface Photovoltaic (PV) systems are nowadays producing a significant amount of the electrical energy used all around the world. The support the PV technology can offer in the next decades, to the rate of growth of the advanced economies as well as of the developing Countries, is very high. The incentives provided at a first stage by the European governments have resulted in the rapid growth of the photovoltaic market and in the increase of the number and quality of products offered by the industries. PV modules by many producers are nowadays commercially available and a number of power electronic systems have been put on the Market for processing the electric power produced by PV systems, especially for grid connected applications. Also the scientific literature concerning PV applications has been characterized by a strong quantitative and qualitative growth in the last decade. A huge number of papers has been written and continues to be published in many journals; moreover, high impact factor scientific journals which are specifically devoted to photovoltaic systems are printed. A significant number of scientific papers is dedicated to the control of the photovoltaic source. A simple search on the Reuters Thomson website reveals that, at the end of May 2012, about 600 papers include the Maximum Power Point Tracking among their keywords. Many authors have contributed to the scientific field of the circuits and systems ensuring the best operation of the photovoltaic generator, but a reference in this field is still lacking. Some books that try to assess the most significant improvements concerning the connection of the photovoltaic systems to the grid have been recently published\"-- Provided by publisher.
Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty
It is expected that electric vehicles (EVs) will soon represent a large share of the demand for electricity. Several research works have extolled the advantages of these devices as flexible demands, not only to charge their batteries when it is cheaper to do so, but also to provide services in the form of vehicle-to-grid (V2G) power injections to the system. These services, however, could reduce the useful life of the battery and thus introduce a cost that needs to be taken into account when scheduling the charging of these vehicles. This study presents a scheduling algorithm for EVs under a real time pricing scheme with uncertainty. The objective function explicitly takes into account the cost of battery degradation not only when used to provide services to the system but also in terms of the EV utilisation for motion. The results show that the scheduling of the V2G services is sensitive to the electricity prices uncertainty and to the degradation costs derived from the energy arbitrage. Also, the optimal energy state of charge of the batteries is highly dependent on whether the cost of battery degradation is taken into account or not.
Photovoltaic laboratory : safety, code-compliance, and commercial off-the-shelf equipment
\"This textbook is comprised of twelve chapters, each one representing a well-defined sequence of measurements and analyses. The laboratory textbook is designed to be a companion to photovoltaics lecture sequence covering the sun as a resource, photovoltaic components, systems, and applications\"-- Provided by publisher.
Carbon-Based Supercapacitors Produced by Activation of Graphene
Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.