Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
598 result(s) for "Electrochemical sensing"
Sort by:
Graphene Oxide Based Electrochemical Genosensor for Label Free Detection of Mycobacterium tuberculosis from Raw Clinical Samples
rapid detection is still a formidable challenge to have control over the lethal disease. New diagnostic methods such as LED fluorescence microscopy, Genexpert, Interferon Gamma Release Assay (IGRA) are limited on efficacy spectrum owing to their high cost, time-intensive and laborious nature, in addition their low sensitivity hinders their robustness and portability. Electroanalytical methods are now being considered as an excellent alternative, being currently employed for efficient detection of the analytes with the potential of being portable. This report suggests label-free electrochemical detection of Mycobacterium tuberculosis (Mtb) via its marker, insertion sequence (IS6110). In this pursuit, graphene oxide-chitosan nanocomposite (GO-CHI), a biocompatible matrix, having a large electroactive area with an overall positively charged surface, is fabricated and characterized. The obtained GO-CHI nanocomposite is then immobilized on the ITO surface to form a positively functionalized electrochemical sensor for the detection of Mtb. DNA probe, specific for the IS6110, was electrostatically anchored on a positively charged electrode surface and the resistance of charge transfer was investigated for the sensitive and specific (complementary vs non-complementary) detection of Mtb by cyclic voltammetry and differential pulse voltammetry techniques. The cyclic voltammetry was found to be diffusion controlled facilitating the absorption of analyte on the electrode surface. The label-free \"genosensor\" was found to detect a hybridization efficiency with a limit of detection of 3.4 pM, and correlation coefficient R =0.99 when analysed over a range of concentrations of DNA from 7.86 pM to 94.3pM. The genosensor was also able to detect target DNA from raw sputum samples of clinical isolates without DNA purification. This electrochemical genosensor provides high sensitivity and specificity; thus offering a promising platform for clinical diagnosis of TB and other infectious diseases in general.
Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing
Nowadays, bioelectronic devices are evolving from rigid to flexible materials and substrates, among which thermally-drawn-fiber-based bioelectronics represent promising technologies thanks to their inherent flexibility and seamless integration of multi-functionalities. However, electrochemical sensing within fibers remains a poorly explored area, as it imposes new demands for material properties—both the electrochemical sensitivity and the thermomechanical compatibility with the fiber drawing process. Here, we designed and fabricated microelectrode fibers made of carbon nanotube (CNT)-based hybrid nanocomposites and further evaluated their detailed electrochemical sensing performances. Carbon-black-impregnated polyethylene (CB-CPE) was chosen as the base material, into which CNT was loaded homogeneously in a concentration range of 3.8 to 10 wt%. First, electrical impedance characterization of CNT nanocomposites showed a remarkable decrease of the resistance with the increase in CNT loading ratio, suggesting that CNTs notably increased the effective electrical current pathways inside the composites. In addition, the proof-of-principle performance of fiber-based microelectrodes was characterized for the detection of ferrocenemethanol (FcMeOH) and dopamine (DA), exhibiting an ultra-high sensitivity. Additionally, we further examined the long-term stability of such composite-based electrode in exposure to the aqueous environment, mimicking the in vivo or in vitro settings. Later, we functionalized the surface of the microelectrode fiber with ion-sensitive membranes (ISM) for the selective sensing of Na+ ions. The miniature fiber-based electrochemical sensor developed here holds great potential for standalone point-of-care sensing applications. In the future, taking full advantage of the thermal drawing process, the electrical, optical, chemical, and electrochemical modalities can be all integrated together within a thin strand of fiber. This single fiber can be useful for fundamental multi-mechanistic studies for biological applications and the weaved fibers can be further applied for daily health monitoring as functional textiles.
Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor
The outbreak of the coronavirus disease (COVID-19) pandemic caused by the novel coronavirus (SARS-CoV-2) has been declared an international public health crisis. It is essential to develop diagnostic tests that can quickly identify infected individuals to limit the spread of the virus and assign treatment options. Herein, we report a proof-of-concept label-free electrochemical immunoassay for the rapid detection of SARS-CoV-2 virus via the spike surface protein. The assay consists of a graphene working electrode functionalized with anti-spike antibodies. The concept of the immunosensor is to detect the signal perturbation obtained from ferri/ferrocyanide measurements after binding of the antigen during 45 min of incubation with a sample. The absolute change in the [Fe(CN)6]3−/4− current upon increasing antigen concentrations on the immunosensor surface was used to determine the detection range of the spike protein. The sensor was able to detect a specific signal above 260 nM (20 µg/mL) of subunit 1 of recombinant spike protein. Additionally, it was able to detect SARS-CoV-2 at a concentration of 5.5 × 105 PFU/mL, which is within the physiologically relevant concentration range. The novel immunosensor has a significantly faster analysis time than the standard qPCR and is operated by a portable device which can enable on-site diagnosis of infection.
Electrochemical and Optical Sensors for Real-Time Detection of Nitrate in Water
The health and integrity of our water sources are vital for the existence of all forms of life. However, with the growth in population and anthropogenic activities, the quality of water is being impacted globally, particularly due to a widespread problem of nitrate contamination that poses numerous health risks. To address this issue, investigations into various detection methods for the development of in situ real-time monitoring devices have attracted the attention of many researchers. Among the most prominent detection methods are chromatography, colorimetry, electrochemistry, and spectroscopy. While all these methods have their pros and cons, electrochemical and optical methods have emerged as robust and efficient techniques that offer cost-effective, accurate, sensitive, and reliable measurements. This review provides an overview of techniques that are ideal for field-deployable nitrate sensing applications, with an emphasis on electrochemical and optical detection methods. It discusses the underlying principles, recent advances, and various measurement techniques. Additionally, the review explores the current developments in real-time nitrate sensors and discusses the challenges of real-time implementation.
Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme
Despite of various advancements in biosensing, a rapid, accurate, and on-site detection of a bacterial pathogen is a real challenge due to the lack of appropriate diagnostic platforms. To address this unmet need, we herein report an aptamer-mediated tunable NanoZyme sensor for the detection of Pseudomonas aeruginosa, an infectious bacterial pathogen. Our approach exploits the inherent peroxidase-like NanoZyme activity of gold nanoparticles (GNPs) in combination with high affinity and specificity of a Pseudomonas aeruginosa–specific aptamer (F23). The presence of aptamer inhibits the inherent peroxidase-like activity of GNPs by simple adsorption on to the surface of GNPs. However, in the presence of cognate target (P. aeruginosa), owing to the high affinity for P. aeruginosa, the aptamer leaves the GNP surface, allowing GNPs to resume their peroxidase-like activity, resulting in oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). As TMB is an electrochemically active species, we have been able to translate the NanoZyme-based method into an ultrasensitive electrochemical assay using disposable carbon screen-printed electrode. This approach is highly sensitive and allows us to rapidly detect P. aeruginosa with a low-end detection limit of ~ 60 CFU/mL in water within 10 min. This generic aptamer-NanoZyme-based electrochemical sensing strategy may, in principle, be applicable for the detection of various other bacterial pathogens.
Multifunctional Flexible Sensor Based on Laser-Induced Graphene
The paper presents the design and fabrication of a low-cost and easy-to-fabricate laser-induced graphene sensor together with its implementation for multi-sensing applications. Laser-irradiation of commercial polymer film was applied for photo-thermal generation of graphene. The graphene patterned in an interdigitated shape was transferred onto Kapton sticky tape to form the electrodes of a capacitive sensor. The functionality of the sensor was validated by employing them in electrochemical and strain-sensing scenarios. Impedance spectroscopy was applied to investigate the response of the sensor. For the electrochemical sensing, different concentrations of sodium sulfate were prepared, and the fabricated sensor was used to detect the concentration differences. For the strain sensing, the sensor was deployed for monitoring of human joint movements and tactile sensing. The promising sensing results validating the applicability of the fabricated sensor for multiple sensing purposes are presented.
Functional Polymers Structures for (Bio)Sensing Application—A Review
In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials’ immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.
Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications
There has been an exponential surge in reports on two-dimensional (2D) materials ever since the discovery of graphene in 2004. Transition metal dichalcogenides (TMDs) are a class of 2D materials where weak van der Waals force binds individual covalently bonded X–M–X layers (where M is the transition metal and X is the chalcogen), making layer-controlled synthesis possible. These individual building blocks (single-layer TMDs) transition from indirect to direct band gaps and have fascinating optical and electronic properties. Layer-dependent opto-electrical properties, along with the existence of finite band gaps, make single-layer TMDs superior to the well-known graphene that paves the way for their applications in many areas. Ultra-fast response, high on/off ratio, planar structure, low operational voltage, wafer scale synthesis capabilities, high surface-to-volume ratio, and compatibility with standard fabrication processes makes TMDs ideal candidates to replace conventional semiconductors, such as silicon, etc., in the new-age electrical, electronic, and opto-electronic devices. Besides, TMDs can be potentially utilized in single molecular sensing for early detection of different biomarkers, gas sensors, photodetector, and catalytic applications. The impact of COVID-19 has given rise to an upsurge in demand for biosensors with real-time detection capabilities. TMDs as active or supporting biosensing elements exhibit potential for real-time detection of single biomarkers and, hence, show promise in the development of point-of-care healthcare devices. In this review, we provide a historical survey of 2D TMD-based biosensors for the detection of bio analytes ranging from bacteria, viruses, and whole cells to molecular biomarkers via optical, electronic, and electrochemical sensing mechanisms. Current approaches and the latest developments in the study of healthcare devices using 2D TMDs are discussed. Additionally, this review presents an overview of the challenges in the area and discusses the future perspective of 2D TMDs in the field of biosensing for healthcare devices.
Electrochemistry of Flavonoids: A Comprehensive Review
Flavonoids represent a large group of aromatic amino acids that are extensively disseminated in plants. More than six thousand different flavonoids have been isolated and identified. They are important components of the human diet, presenting a broad spectrum of health benefits, including antibacterial, antiviral, antimicrobial, antineoplastic, anti-mutagenic, anti-inflammatory, anti-allergic, immunomodulatory, vasodilatory and cardioprotective properties. They are now considered indispensable compounds in the healthcare, food, pharmaceutical, cosmetic and biotechnology industries. All flavonoids are electroactive, and a relationship between their electron-transfer properties and radical-scavenging activity has been highlighted. This review seeks to provide a comprehensive overview concerning the electron-transfer reactions in flavonoids, from the point of view of their in-vitro antioxidant mode of action. Flavonoid redox behavior is related to the oxidation of the phenolic hydroxy groups present in their structures. The fundamental principles concerning the redox behavior of flavonoids will be described, and the phenol moiety oxidation pathways and the effect of substituents and experimental conditions on flavonoid electrochemical behavior will be discussed. The final sections will focus on the electroanalysis of flavonoids in natural products and their identification in highly complex matrixes, such as fruits, vegetables, beverages, food supplements, pharmaceutical compounds and human body fluids, relevant for food quality control, nutrition, and healthcare research.
Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2
Non-enzymatic sensing has been in the research limelight, and most sensors based on nanomaterials are designed to detect single analytes. The simultaneous detection of analytes that together exist in biological organisms necessitates the development of effective and efficient non-enzymatic electrodes in sensing. In this regard, the development of sensing elements for detecting glucose and hydrogen peroxide (H2O2) is significant. Non-enzymatic sensing is more economical and has a longer lifetime than enzymatic electrochemical sensing, but it has several drawbacks, such as high working potential, slow electrode kinetics, poisoning from intermediate species and weak sensing parameters. We comprehensively review the recent developments in non-enzymatic glucose and H2O2 (NEGH) sensing by focusing mainly on the sensing performance, electro catalytic mechanism, morphology and design of electrode materials. Various types of nanomaterials with metal/metal oxides and hybrid metallic nanocomposites are discussed. A comparison of glucose and H2O2 sensing parameters using the same electrode materials is outlined to predict the efficient sensing performance of advanced nanomaterials. Recent innovative approaches to improve the NEGH sensitivity, selectivity and stability in real-time applications are critically discussed, which have not been sufficiently addressed in the previous reviews. Finally, the challenges, future trends, and prospects associated with advanced nanomaterials for NEGH sensing are considered. We believe this article will help to understand the selection of advanced materials for dual/multi non-enzymatic sensing issues and will also be beneficial for researchers to make breakthrough progress in the area of non-enzymatic sensing of dual/multi biomolecules.