Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
27,788 result(s) for "Electromagnetic Radiation"
Sort by:
Effects of Low-Frequency Randomly Polarized Electromagnetic Radiation, as Revealed upon Swelling of Polymer Membrane in Water with Different Isotopic Compositions
Photoluminescence from the surface of Nafion polymer membrane upon swelling in water under irradiation by electromagnetic waves at a frequency of 100 MHz was studied. In these experiments, natural deionized (DI) water with a deuterium content of 157 ppm and deuterium-depleted water (DDW, deuterium content is 1 ppm) were explored. We have studied for the first time the effect of linearly and randomly polarized low-frequency electromagnetic radiation on the luminescence excitation. To obtain low-frequency electromagnetic radiation with random polarizations, anisotropic solid submicron-sized particles, which result in depolarization effects upon scattering of the initially linearly polarized radiation, were used. We compared two types of colloidal particles: spherically symmetric (isotropic) and elongated (anisotropic). If the radiation is linearly polarized, the intensity of luminescence from the Nafion surface decreases exponentially as the polymer is soaked, and such a behavior is observed both in natural DI water and DDW. When spherically symmetric submicron-sized particles are added to a liquid sample, the luminescence intensity also decreases exponentially upon swelling in both natural DI water and DDW. At the same time, when anisotropic submicron-sized particles are added to DI water, random jumps in the luminescence intensity appear during swelling. At the same time, the exponential decrease in the luminescence intensity is retained upon swelling in DDW. A qualitative theoretical model for the occurrence of random jumps in the luminescence intensity is presented.
Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators
Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from spectroscopy to quantum information processing. Unfortunately, existing tunable parametric sources are marred by deficiencies that obstruct their widespread adoption. Here, we show that ultrahigh-Q crystalline microresonators made of magnesium fluoride can overcome these limitations, enabling compact and power-efficient devices capable of generating clean and widely tunable sidebands. We consider several different resonators with carefully engineered dispersion profiles, achieving hundreds of nanometres of sideband tunability in each device. In addition to direct observations of discrete tunability over an optical octave from 1,083 nm to 2,670 nm, we record signatures of mid-infrared sidebands at almost 4,000 nm. The simplicity of the demonstrated devices—compounded by their remarkable tunability—paves the way for low-cost, widely tunable sources of electromagnetic radiation.
Effect of 150 kHz electromagnetic radiation on the development of polycystic ovaries induced by estradiol Valerate in Sprague Dawley rats
Background Polycystic ovary syndrome (PCOS) is the most common complex endocrine disorder affecting approximately 2–20% of reproductive aged females. Tumour Treating Fields (100–300 kHz) is a recent innovative, non-invasive therapeutic approach to cancer therapy. This frequency as an alternative therapy for the management of polycystic ovaries has not yet been explored. Objectives To explore the effect of full-body exposure of 150 kHz Electromagnetic Radiation (EMR), on the development of polycystic ovaries in an estradiol valerate-induced PCO rat model. Method Twenty-one female adult rats were divided into three groups ( n  = 7 each): control, Estradiol Valerate (EV) and EV + EMR groups. The EV + EMR group was subjected to full body exposure at 150 kHz EMR continuously for eight consecutive weeks. Estradiol valerate was administered orally to induce polycystic ovaries in EV and EV + EMR groups. Body and ovarian weights were recorded and analysed. The regularity of the estrous cycle was assessed in all three groups. The histological study of ovarian tissue was carried out by haematoxylin and eosin staining. The serum concentration levels of Luteinizing Hormone (LH), Follicle-Stimulating Hormone (FSH) and testosterone were measured using the ELISA method. Results The body and ovary weights did not differ significantly between the EV and EV + EMR groups. The estrous cycle was found to be irregular in both the EV and EV + EMR groups. Ovarian histology revealed near normal morphology with little or no degenerative and morphological changes in developing follicles in the exposed group. Histometrical analysis showed an increased number of developing follicles and a significant reduction in the number and size of follicular cysts ( p  < 0.05) in the EV + EMR group. Hormonal analysis revealed no significant difference in the testosterone and FSH levels between the EV + EMR and EV groups. However, the LH, LH/FSH ratio decreased significantly in the EV + EMR group compares to the EV group. Conclusion The 150 kHz EMR appear to have little or no degenerative and morphological changes in the developing follicles, an increased number of typical developing follicles and a significant reduction in the number and size of the follicular cysts ( p  < 0.05).
What is harmful for male fertility: Cell phone or the wireless internet?
In this study, we aimed to assess the potential harmful effects of radiofrequency-electromagnetic radiation on sperm parameters. We requested semen for analyses from the male patients coming to our infertility division and also asked them to fill out an anonymous questionnaire. We queried their mobile phone and wireless internet usage frequencies in order to determine their radiofrequency-electromagnetic radiation exposure. A total of 1082 patients filled the questionnaire but 51 of them were excluded from the study because of azoospermia. There was no significant difference between sperm counts and sperm morphology excluding sperm motility, due to mobile phone usage period, (p = 0.074, p = 0.909, and p = 0.05, respectively). The total motile sperm count and the progressive motile sperm count decreased due to the increase of internet usage (p = 0.032 and p = 0.033, respectively). In line with the total motile sperm count, progressive motile sperm count also decreased with wireless internet usage compared with the wired internet connection usage (p = 0.009 and p = 0.018, respectively). There was a negative correlation between wireless internet usage duration and the total sperm count (r = −0.089, p = 0.039). We have also explored the negative effect of wireless internet use on sperm motility according to our preliminary results.
Applied Frequency-Domain Electromagnetics
Understanding electromagnetic wave theory is pivotal in the design of antennas, microwave circuits, radars, and imaging systems. Researchers behind technology advances in these and other areas need to understand both the classical theory of electromagnetics as well as modern and emerging techniques of solving Maxwell's equations. To this end, the book provides a graduate-level treatment of selected analytical and computational methods. The analytical methods include the separation of variables, perturbation theory, Green's functions, geometrical optics, the geometrical theory of diffraction, physical optics, and the physical theory of diffraction. The numerical techniques include mode matching, the method of moments, and the finite element method. The analytical methods provide physical insights that are valuable in the design process and the invention of new devices. The numerical methods are more capable of treating general and complex structures. Together, they form a basis for modern electromagnetic design. The level of presentation allows the reader to immediately begin applying the methods to some problems of moderate complexity. It also provides explanations of the underlying theories so that their capabilities and limitations can be understood.
A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites
This paper revises the use of polymer nanocomposites to attenuate high-energy electromagnetic radiation (HE-EMR), such as gamma radiation. As known, high-energy radiation produces drastic damage not only in facilities or electronic devices but also to life and the environment. Among the different approaches to attenuate the HE-EMR, we consider the use of compounds with a high atomic number (Z), such as lead, but as known, lead is toxic. Therefore, different works have considered low-toxicity post-transitional metal-based compounds, such as bismuth. Additionally, nanosized particles have shown higher performance to attenuate HE-EMR than those that are micro-sized. On the other hand, materials with π-conjugated systems can also play a role in spreading the energy of electrons ejected as a consequence of the interaction of HE-EMR with matter, preventing the ionization and bond scission of polymers. The different effects produced by the interactions of the matter with HE-EMR are revised. The increase of the shielding properties of lightweight, flexible, and versatile materials such as polymer-based materials can be a contribution for developing technologies to obtain more efficient materials for preventing the damage produced for the HE-EMR in different industries where it is found.
Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis
The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
Occurrence of primary brain tumors in cochlear implant patients in Sweden between 1989 and 2014
Cochlear implants are widely used for hearing rehabilitation of deaf children with congenital deafness or adults with acquired severe-to-profound hearing loss. The sound processor antenna creates a radio frequency-electromagnetic field transmitting the sound signal to the implant, similar to that in a mobile phone. A recent case report suggested a relationship between cochlear implants and malignant glioma, and some epidemiological studies have suggested an increased glioma and acoustic neuroma risk associated with long hours of mobile phone use. An epidemiological study is warranted to evaluate such a relationship in patients with cochlear implants. To examine whether this chronic radio frequency-electromagnetic field signaling is associated with an increased brain tumor risk, a population-based cohort study was performed examining all 2,748 patients receiving a cochlear implant in Sweden during the years 1989-2014. In all, 3,169 surgeries were performed in the total cohort. The expected occurrence of glioma, meningioma, and acoustic neuroma in the patient cohort was calculated using specific national incidence rates in the Swedish population. Four patients were diagnosed with a brain tumor during follow-up, three of them having meningioma compared with 0.95 expected (standardized incidence ratio =3.16, 95% CI 0.65-9.24), and one had glioma compared with 1.34 expected (standardized incidence ratio =0.75, 95% CI 0.02-4.15). No case of acoustic neuroma was observed compared with 0.09 expected. In this study, we did not find support for concerns raised in a previous case report regarding a potentially higher risk of glioma. The number of brain tumors observed was well within the numbers expected from national incidence figures. Although this was a relatively small cohort with a limited follow-up time, it is the largest epidemiological study to date to address this concern.
Enhancing security in electromagnetic radiation therapy using fuzzy graph theory
This research investigates the application of fuzzy graph theory to address critical security challenges in electromagnetic radiation therapy systems. Through comprehensive theoretical analysis and experimental validation, we introduce novel approaches leveraging fuzzy cognitive maps and fuzzy graph-based architectures for access control, intrusion detection, secure communication, and risk assessment. The study demonstrates significant improvements over traditional security measures across multiple performance metrics. The fuzzy graph-based access control model achieved a 2.5% false acceptance rate compared to 7.8% in traditional systems, while intrusion detection accuracy improved to 95% with only 3% false positives. Secure communication protocols demonstrated 98% confidentiality and 96% integrity rates, surpassing conventional methods. Risk assessment coverage increased to 92% with reduced false positives. The system maintained linear scaling in processing time from 180 ms at 1000 to 320 ms at 100,000 records, with CPU utilization remaining between 65 and 72%. These findings underscore the immense potential of fuzzy graph theory in strengthening the safety and privacy of electromagnetic radiation therapy systems, providing a foundation for future research and clinical adoption. The study also identifies key directions for future research, including machine learning integration, blockchain implementation, and scalability optimization.
Rock Burst Precursor Electromagnetic Radiation Signal Recognition Method and Early Warning Application Based on Recurrent Neural Networks
The fracture-induced electromagnetic radiation (FEMR) method is a promising geophysical method for the monitoring and early warning of coal-rock burst disasters. At present, the time-series characteristics of FEMR data are primarily used for rock burst monitoring and early warning. However, these rock burst precursor signal identification and hazard warning methods need further development. The progress made in the field of deep learning provides a new method for the identification of rock burst warning signals and the realization of intelligent early warning. In this paper, based on a deep learning algorithm, a method for identifying rock burst precursor FEMR signals is proposed. Based on bidirectional long short-term memory recurrent neural networks, this method trains and validates the model by analyzing a large number of normal FEMR signals and rock burst FEMR precursor signals. The input of the model is the FEMR data sequence, and the corresponding output is the hazard identification result. Upon the completion of training and validation, the model can perform automatic/intelligent shock hazard precursor signal recognition and quickly and accurately provide rock burst hazard early warning without requiring parameter adjustment and manual intervention. The results obtained showed that the rock burst precursor signal recognition method based on the recurrent neural network responds well to the rock burst hazard and can capture information regarding impact hazards in advance. Therefore, it is of great significance with regard to accurate rock burst monitoring and early warning.