Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,116
result(s) for
"Electron cyclotron resonance"
Sort by:
A Compact Two-Frequency Notch Filter for Millimeter Wave Plasma Diagnostics
by
Ruess, T.
,
Wagner, D.
,
Leuterer, F.
in
Classical Electrodynamics
,
Cyclotron resonance
,
Cyclotron resonance devices
2020
Sensitive millimeter wave diagnostics in magnetic confinement plasma fusion experiments need protection from gyrotron stray radiation in the plasma vessel. Modern electron cyclotron resonance heating (ECRH) systems take advantage of multi-frequency gyrotrons. This means that the frequency band of some millimeter wave diagnostics contains more than one narrow-band gyrotron-frequency line, which needs to be effectively suppressed. A compact standard waveguide notch filter based on coupled waveguide resonators with rectangular cross-section is presented which can provide very high suppression of several gyrotron frequencies and has low insertion loss of the passband.
Journal Article
Innovative Analytical Method for X-ray Imaging and Space-Resolved Spectroscopy of ECR Plasmas
2022
At the Italian National Institute for Nuclear Physics-Southern National Laboratory (INFN-LNS), and in collaboration with the ATOMKI laboratories, an innovative multi-diagnostic system with advanced analytical methods has been designed and implemented. This is based on several detectors and techniques (Optical Emission Spectroscopy, RF systems, interfero-polarimetry, X-ray detectors), and here we focus on high-resolution, spatially resolved X-ray spectroscopy, performed by means of a X-ray pin-hole camera setup operating in the 0.5–20 keV energy domain. The diagnostic system was installed at a 14 GHz Electron Cyclotron Resonance (ECR) ion source (ATOMKI, Debrecen), enabling high-precision, X-ray, spectrally resolved imaging of ECR plasmas heated by hundreds of Watts. The achieved spatial and energy resolutions were 0.5 mm and 300 eV at 8 keV, respectively. Here, we present the innovative analysis algorithm that we properly developed to obtain Single Photon-Counted (SPhC) images providing the local plasma-emitted spectrum in a High-Dynamic-Range (HDR) mode, by distinguishing fluorescence lines of the materials of the plasma chamber (Ti, Ta) from plasma (Ar). This method allows for a quantitative characterization of warm electrons population in the plasma (and its 2D distribution), which are the most important for ionization, and to estimate local plasma density and spectral temperatures. The developed post-processing analysis is also able to remove the readout noise that is often observable at very low exposure times (msec). The setup is now being updated, including fast shutters and trigger systems to allow simultaneous space and time-resolved plasma spectroscopy during transients, stable and turbulent regimes.
Journal Article
KIT coaxial gyrotron development: from ITER toward DEMO
by
Illy, S.
,
Kalaria, P. C.
,
Ruess, T.
in
Cyclotron resonance
,
Cyclotron resonance devices
,
Efficiency
2018
Karlsruhe Institute of Technology (KIT) is doing research and development in the field of megawatt-class radio frequency (RF) sources (gyrotrons) for the Electron Cyclotron Resonance Heating (ECRH) systems of the International Thermonuclear Experimental Reactor (ITER) and the DEMOnstration Fusion Power Plant that will follow ITER. In the focus is the development and verification of the European coaxial-cavity gyrotron technology which shall lead to gyrotrons operating at an RF output power significantly larger than 1 MW CW and at an operating frequency above 200 GHz. A major step into that direction is the final verification of the European 170 GHz 2 MW coaxial-cavity pre-prototype at longer pulses up to 1 s. It bases on the upgrade of an already existing highly modular short-pulse (ms-range) pre-prototype. That pre-prototype has shown a world record output power of 2.2 MW already. This paper summarizes briefly the already achieved experimental results using the short-pulse pre-prototype and discusses in detail the design and manufacturing process of the upgrade of the pre-prototype toward longer pulses up to 1 s.
Journal Article
Plasma parameter diagnosis using hydrogen emission spectra of a quartz-chamber 2.45 GHz ECRIS at Peking University
by
Zhang, JingFeng
,
Peng, ShiXiang
,
Ren, HaiTao
in
Astronomy
,
Chambers
,
Classical and Continuum Physics
2018
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source (ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 mA hydrogen ion beam at 50 kV with a duty factor of 10%. The root-mean-square (RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work, the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10
−4
to 1×10
−3
Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.
Journal Article
First Results and Plasma Current Start-Up in Taban Tokamak
2019
Plasma current start-up and pre-ionization is an important motivation in Taban tokamak. The plasma current start-up has been successfully achieved using a central solenoid and a pre-ionization system and the experimental conditions have been optimized. Two distinct schemes were used to start-up the plasma current. Hot cathode emitter and electron cyclotron resonance (ECR) was used as the pre-ionization system. ECR pre-ionization circuit of 2.45 GHz magnetron was modified for long duration pulse mode. The transient plasma parameters were measured during discharge as a function of time in different conditions, while a toroidal field of 0.1 T with 4 ms flat-top was being applied. The experimental results showed that the plasma current could be started up by both ECR and hot cathode emitter. In the optimum conditions, a plasma current of 7.5 kA has been achieved with pulse duration of ~ 0.7 ms using the electron cyclotron pre-ionization system. Under such circumstances, the X-ray emission, as well as, the impurity level was minimized.
Journal Article
Design and Analysis of Slotted Waveguide Antenna Radiating in a “Plasma-Shaped” Cavity of an ECR Ion Source
by
Sorbello, Gino
,
Pidatella, Angelo
,
Mauro, Giorgio Sebastiano
in
Antennas
,
Bandwidths
,
Cyclotron resonance
2021
The design of a microwave antenna sustaining a high-energy-content plasma in Electron Cyclotron Resonance Ion Sources (ECRISs) is, under many aspects, similar to the design of a conventional antenna but presenting also peculiarities because of the antenna lying in a cavity filled by an anisotropic plasma. The plasma chamber and microwave injection system design plays a critical role in the development of future ECRISs. In this paper, we present the numerical study of an unconventionally shaped plasma cavity, in which its geometry is inspired by the typical star-shaped ECR plasma, determined by the electrons trajectories as they move under the influence of the plasma-confining magnetic field. The cavity has been designed by using CST Studio Suite with the aim to maximize the on-axis electric field, thus increasing the wave-to-plasma absorption. As a second step, an innovative microwave injection system based on side-coupled slotted waveguides is presented. This new launching scheme allows an uniform power distribution inside the plasma cavity which could lead to an increase of ion source performances in terms of charge states and extracted currents when compared to the conventional axial microwave launch scheme. Finally, the use of both the “plasma-shaped” cavity and the microwave side coupled scheme could make the overall setup more compact.
Journal Article
Minimization of the Ohmic Loss of Grooved Polarizer Mirrors in High-Power ECRH Systems
by
Wagner, D.
,
Leuterer, F.
,
Stober, J.
in
Bends
,
Classical Electrodynamics
,
Corrugated waveguides
2017
A set of two corrugated polarizer mirrors is typically used in high-power electron cyclotron resonance heating (ECRH) systems to provide the required polarization of the ECRH output beam. The ohmic losses of these mirrors can significantly exceed the losses of plane mirrors depending on the polarization of the incident beam with respect to the orientation of the grooves. Since polarizer mirrors incorporated into miter bends of a corrugated waveguide line are limited in size, active water cooling can become critical in high-power cw systems like the one for ITER. The ohmic loss of polarizer mirrors has been investigated experimentally at high power. A strategy to minimize the losses for given mirror geometries has been found.
Journal Article
Low-Z gas stripper as an alternative to carbon foils for the acceleration of high-power uranium beams
2011
The RIKEN accelerator complex started feeding the next-generation exotic beam facility radioisotope beam factory (RIBF) with heavy-ion beams from 2007 after the successful commissioning of RIBF at the end of 2006. Many improvements made from 2007 to 2010 were instrumental in increasing the intensity of various heavy-ion beams. However, the available beam intensity of very heavy ion beams, especially uranium beams, is far below our goal of 1pμA (6×1012particles/s ). In order to achieve this goal, upgrade programs are already in progress; the programs include the construction of a new 28-GHz superconducting electron cyclotron resonance ion source and a new injector linac. However, the most serious problem, that of a charge stripper for high-power uranium beams, still remains unsolved, despite extensive research and development work using large foils mounted on a rotating cylinder and a N2 gas stripper. A gas stripper is free from problems related to lifetime, though the equilibrium charge state in this stripper is considerably lower than that in a carbon foil, owing to the absence of the density effect. Nevertheless, the merits of gas strippers motivated us to develop a low-Z gas stripper to achieve a higher equilibrium charge state even in gases. We measured the electron-loss and electron-capture cross sections of uranium ions in He gas as a function of their charge state at 11, 14, and 15MeV/nucleon . The equilibrium charge states extracted from the intersection of the lines of the two cross sections were promisingly higher than those in N2 gas by more than 10. Simple simulations of charge development along the stripper thickness were performed by assuming the measured cross sections. The simulation results show that about 1mg/cm2 of He gas should be accumulated to achieve a charge state higher than that of N2 gas, notwithstanding the difficulty in accumulation of this helium amount owing to its fast dispersion. However, we now believe that the following two solutions can overcome this difficulty: a gas cell with a very large differential pumping system and a gas cell with a plasma window. Their merits and demerits are discussed in the paper.
Journal Article
State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers
2020
This paper presents a review of the experimental achievements related to the development of high-power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for many applications. In addition, this work gives a short overview on the present development status of frequency step-tunable and multi-frequency gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyro-harmonic converters, gyro-peniotrons, magnicons, free electron masers (FEMs), and dielectric vacuum windows for such high-power mm-wave sources. Gyrotron oscillators (gyromonotrons) are mainly used as high-power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control, and diagnostics of magnetically confined plasmas for clean generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 min (CPI and European KIT-SPC-THALES collaboration). The world record parameters of the European tube are as follows: 0.92 MW output power at 30-min pulse duration, 97.5% Gaussian mode purity, and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0-s pulses at 45% efficiency was generated with the QST-TOSHIBA (now CANON) 110-GHz gyrotron. The Japan 170-GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170-GHz ITER gyrotron obtained 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53% efficiency. The prototype tube of the European 2-MW, 170-GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.2 MW at 48% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver
P
out
= 210 kW with
τ
= 20 μs at frequencies up to 670 GHz (
η
≅ 20%),
P
out
= 5.3 kW at 1 THz (
η
= 6.1%), and
P
out
= 0.5 kW at 1.3 THz (
η
= 0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require tubes with the following parameters:
f
>
24 GHz,
P
out
= 4–50 kW, CW,
η
>
30%. The CW powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW at wavelengths 50–240 μm (6.00–1.25 THz).
Journal Article
Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications
by
Olea, Javier
,
del Prado, Álvaro
,
García, Héctor
in
Amorphous silicon
,
Chemical vapor deposition
,
Chemistry and Materials Science
2016
A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100–150 °C) might be the best choice.
Journal Article