Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
918
result(s) for
"Electron traps"
Sort by:
Molecular Simulation of Electron Traps in Epoxy Resin/Graphene Oxide Nanocomposites
2022
Trapped space charges in epoxy composite distort the electric field, which will induce the failure of the insulation system, and nano graphene oxide may inhibit the curing behavior of epoxy resin matrix. This paper analyzes how the two interfaces affect the electron traps of epoxy resin/graphene oxide systems with different nanofiller contents. The electron affinity energy of epoxy resin matrix and nano filler molecules in the epoxy resin/graphene oxide system is calculated based on quantum chemistry. It is found that nano graphene oxide has a strong electron affinity energy and is easier to capture electrons. Then the influence of the interface formed by the epoxy resin matrix and the nano graphene oxide on the electron transfer ability is calculated. The epoxy resin matrix contains the electron transfer ability of interfaces formed by nano graphene oxide and the molecular chain is different from that of unreacted molecules. The results can provide a reference for the modification of epoxy resin/graphene oxide nanocomposites.
Journal Article
Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance
2024
Polymer-based composites with excellent dielectric properties are essential for advanced energy storage applications. In this work, the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a filler was incorporated into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) composite to improve its dielectric performance. P(VDF-HFP) composite films with varying PCBM concentrations were prepared via solution casting and their dielectric, energy storage, and charge–discharge properties were characterized. It was found that the doped PCBM could introduce new charge traps with an energy level of 1.25 eV that modulate charge transport and energy storage characteristics of the polymer matrix. The dielectric constant of the composites was enhanced to the maximum of 10.87 as 0.2 vol% PCBM was added, while the breakdown strength reached 455 MV/m, achieving an energy density of 7.38 J/cm3, which is 33% higher than the pristine P(VDF-HFP) film. Furthermore, the charge–discharge efficiency of the composites was enhanced 66% under the electric field of 300 MV/m. These results demonstrate that PCBM significantly improves the dielectric and energy storage properties of P(VDF-HFP) composites, providing a promising approach for the development of high-performance dielectric materials in flexible energy storage devices.
Journal Article
Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles
by
Diethelm, Matthias
,
Sedghi, Mohammad
,
Padula, Daniele
in
charge trap dynamics
,
Density
,
device physics
2024
Already in 2012, Blom et al. reported (Nature Materials 2012,
, 882) in semiconducting polymers on a general electron-trap density of ≈3 × 10
cm
, centered at an energy of ≈3.6 eV below vacuum. It was suggested that traps have an extrinsic origin, with the water-oxygen complex [2(H
O)-O
] as a possible candidate, based on its electron affinity. However, further evidence is lacking and the origin of universal electron traps remained elusive. Here, in polymer diodes, the temperature-dependence of reversible electron traps is investigated that develop under bias stress slowly over minutes to a density of 2 × 10
cm
, centered at an energy of 3.6 eV below vacuum. The trap build-up dynamics follows a 3
-order kinetics, in line with that traps form via an encounter between three diffusing precursor particles. The accordance between universal and slowly evolving traps suggests that general electron traps in semiconducting polymers form via a triple-encounter process between oxygen and water molecules that form the suggested [2(H
O)-O
] complex as the trap origin.
Journal Article
Influence of an Electronic Structure of N-TiO2 on Its Photocatalytic Activity towards Decomposition of Acetaldehyde under UV and Fluorescent Lamps Irradiation
2018
The electronic structure of N-TiO2 samples prepared by a sol-gel method was investigated by EPR (Electronic Paramagnetic Resonance) measurements and the energy-resolved distribution of electron traps. In EPR spectra, some of the resonance lines assigned to paramagnetic species of nitrogen and Ti3+ were detected. Sample prepared at 300 °C revealed the highest intensity line of the nitrogen paramagnetic centers, whereas that prepared at 400 °C showed a paramagnetic line for Ti3+. Measurements of the electron trap distribution showed higher density of electron traps for sample prepared at 400 °C than that at 300 °C. Sample prepared at 300 °C, which revealed the highest amount of nitrogen built in the titania in the interstitial position was the most active under visible light. It was evidenced that photocatalytic decomposition of acetaldehyde was dependent strongly on the BET surface area and electrokinetic potential of the photocatalyst surface. The UV content in the fluorescent lamp affected the yield of acetaldehyde decomposition.
Journal Article
Correlation of the Photocatalytic Activities of Cu, Ce and/or Pt-Modified Titania Particles with their Bulk and Surface Structures Studied by Reversed Double-Beam Photoacoustic Spectroscopy
by
Chen, Guangyi
,
Chanapattharapol, Kingkaew Chayakul
,
Unwiset, Preeya
in
Acetic acid
,
Anatase
,
Catalysts
2019
Modified titania photocatalyst powder samples were prepared using the sol-gel method for copper (Cu) and cerium (Ce) doping and impregnation for platinum (Pt) loading. Their bulk crystalline structures were investigated using X-ray diffractometry (XRD) with the Rietveld analysis. The surface/bulk structure, surface properties, and morphologies were observed using reversed double-beam photoacoustic spectroscopy (RDB-PAS), nitrogen adsorption, and scanning electron microscopy, respectively. The results from the XRD revealed that all samples were mainly anatase (ca. 80% or higher) with small amounts of rutile and non-crystalline components. The specific surface areas of all samples were in the range of 115–155 m2 g−1. Ce and Cu species were mainly distributed, while Pt was potentially loaded as a partially oxidized form on the titania surface. The results from the RDB-PAS indicated the changing of the energy-resolved distribution of electron traps (ERDT) from the original titania surface upon doping of the metals (Cu, Ce, and Pt), which altered their catalytic activities. The metals photocatalytic activities with UV irradiation were measured in two representative reactions; (a) CO2 evolution from acetic acid under the aerobic condition and (b) H2 evolution from deaerated aqueous methanol. In reaction (a), the Cu and/or Ce modification gave almost the same or slightly lower activity compared to the non-modified titania samples, while platinum loading yielded ca. 5–6 times higher activity. For reaction (b), the photocatalytic tests were divided into two sets; without (b1) and with (b2) Pt deposition during the reaction. Similar enhancements of activity from the Pt loading sample (and by Cu modification) were observed in reaction (b1) without in-situ platinum deposition, while the unmodified and Ce-doped samples were almost inactive. For the activities of reaction (b2) with in-situ platinum deposition, the unmodified samples showed the highest activity while the Cu-modified samples showed significantly lower activity.
Journal Article
Understanding the Effects of NaCl, NaBr and Their Mixtures on Silver Nanowire Nucleation and Growth in Terms of the Distribution of Electron Traps in Silver Halide Crystals
by
Wang, Hengyu
,
Song, Guangliang
,
Gu, Dawei
in
Additives
,
AgBr1−xClx crystal
,
Coated electrodes
2018
In recent years, many research groups have synthesized ultra-thin silver nanowires (AgNWs) with diameters below 30 nm by employing Cl− and Br− simultaneously in the polyol process. However, the yield of AgNWs in this method was low, due to the production of Ag nanoparticles (AgNPs) as an unwanted byproduct, especially in the case of high Br− concentration. Here, we investigated the roles of Cl− and Br− in the preparation of AgNWs and then synthesized high aspect ratio (up to 2100) AgNWs in high yield (>85% AgNWs) using a Cl− and Br− co-mediated method. We found that multiply-twinned particles (MTPs) with different critical sizes were formed and grew into AgNWs, accompanied by a small and large amount of AgNPs for the NaCl and NaBr additives, respectively. For the first time, we propose that the growth of AgNWs of different diameters and yields can be understood based on the electron trap distribution (ETD) of the silver halide crystals. For the case of Cl− and Br− co-additives, a mixed silver halide crystal of AgBr1−xClx was formed, rather than the AgBr/AgCl mixture reported previously. In this type of crystal, the ETD is uniform, which is beneficial for the synthesis of AgNWs with small diameter (30~40 nm) and high aspect ratio. AgNW transparent electrodes were prepared in air by rod coating. A sheet resistance of 48 Ω/sq and transmittance of 95% at 550 nm were obtained without any post-treatment.
Journal Article
Improving both performance and stability of n-type organic semiconductors by vitamin C
2024
Organic semiconductors (OSCs) are one of the most promising candidates for flexible, wearable and large-area electronics. However, the development of n-type OSCs has been severely held back due to the poor stability of their most candidates, that is, the intrinsically high reactivity of negatively charged polarons to oxygen and water. Here we demonstrate a general strategy based on vitamin C to stabilize n-type OSCs, remarkably improving the performance and stability of their device, for example, organic field-effect transistors. Vitamin C scavenges reactive oxygen species and inhibits their generation by sacrificial oxidation and non-sacrificial triplet quenching in a cascade process, which not only lastingly prevents molecular structure from oxidation damage but also passivates the latent electron traps to stabilize electron transport. This study presents a way to overcome the long-standing stability problem of n-type OSCs and devices.
The development of n-type organic semiconductors (OSCs) has been held back due to stability issues. Here the authors report that vitamin C improves both the performance and stability of n-type OSCs and devices.
Journal Article
Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals
2021
Chemical doping controls the electronic properties of organic semiconductors, but so far, doping protocols and mechanisms are less developed than in conventional semiconductors. Here we describe a unique, site-specific, n-type surface doping mechanism for single crystals of two benchmark organic semiconductors that produces dramatic improvement in electron transport and provides unprecedented evidence for doping-induced space charge. The surface doping chemistry specifically targets crystallographic step edges, which are known electron traps, simultaneously passivating the traps and releasing itinerant electrons. The effect on electron transport is profound: field-effect electron mobility increases by as much as a factor of ten, and its temperature-dependent behaviour switches from thermally activated to band-like. Our findings suggest new site-specific strategies to dope organic semiconductors that differ from the conventional redox chemistry of randomly distributed substitutional impurities. Critically, they also verify the presence of doping-induced electron atmospheres, confirming long-standing expectations for organic systems from conventional solid-state theory.
Organic semiconductor crystals can be selectively doped at the crystallographic step edges, deactivating shallow traps and recovering band-like transport. The space charge induced by chemical doping is observed by scanning Kelvin probe microscopy.
Journal Article
Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing
2021
Bottom surface of active layers and interface of indium tin oxide (ITO) electrodes and active layers play a crucial role in determining the performance of polymer photodetectors with photomultiplication (PM-PPDs). The interfacial trapped electron distribution closing to ITO electrodes will determine spectral response range and external quantum efficiency (EQE) of PMPPDs. The bottom interface is more sensitive than top interface when light is coming from the ITO side, and the larger density of generated charge on the bottom interfaces will induce interfacial band more bending for efficient charge tunneling injection. Highly sensitive and sub-microsecond PM-PPDs are achieved with PMBBDT:Y6 (100:7,
w
/
w
) as active layers under forward bias, yielding EQE of 18,700% at 320 nm, 21,700% at 600 nm and 16,400% at 810 nm under a bias of 7 V, respectively, as well as fast response time of 79 μs. The high EQE of the PM-PPDs is attributed to efficient hole tunneling injection from ITO electrode under forward bias. The electron traps closing to ITO electrode will be quickly filled up when light is coming from ITO side, leading to interfacial band more bending for hole tunneling injection. Importantly, the PM-PPDs is performed to measure heart rate (HR) and blood oxygen saturation (
SpO
2
), and the measured data by the PM-PPDs are very similar with those obtained by commercial photodetectors.
Journal Article
Broadband photomultiplication-type polymer photodetectors and its application in light-controlled circuit
2022
Photomultiplication-type polymer photodetectors (PM-PPDs) were achieved with polymer P3HT as donor and PY3Se-1V as acceptor based on structure of ITO/PEDOT:PSS/active layer/Al. The optimal weight ratio of P3HT to PY3Se-1V is about 100:3. Amounts of isolated electron traps are formed with PY3Se-1V surrounded by P3HT due to rather less content of PY3Se-1V in active layers and about 0.94 eV energy offset between the lowest unoccupied molecular orbitals (LUMO) of P3HT and PY3Se-1V. The optimal PM-PPDs exhibit broad spectral response from 350 to 950 nm and external quantum efficiency (EQE) values of 68,200% at 360 nm, 26,400% at 630 nm and 19,500% at 850 nm under −15 V bias. The working mechanism of PM-PPDs is attributed to the interfacial trap-assisted hole tunneling injection from external circuit. The performance of PM-PPDs can be further improved by incorporating appropriate PMBBDT with high hole mobility as the third component. The EQE values of optimal ternary PM-PPDs are increased to 105,000% at 360 nm, 40,000% at 630 nm and 31,800% at 850 nm under −15 V bias, benefiting from the enhanced hole transport in ternary active layers. The optimal ternary PM-PPDs were successfully applied in a light-controlled circuit to turn on or turn off light emitting diode (LED).
Journal Article