Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,627
result(s) for
"Encephalopathy, Bovine Spongiform - transmission"
Sort by:
Administration of L-type Bovine Spongiform Encephalopathy to Macaques to Evaluate Zoonotic Potential
by
Ohno, Minako
,
Imamura, Morikazu
,
Ono, Fumiko
in
Administration of L-Type Bovine Spongiform Encephalopathy to Macaques to Evaluate Zoonotic Potential
,
Animals
,
Asymptomatic
2025
We administered L-type bovine spongiform encephalopathy prions to macaques to determine their potential for transmission to humans. After 75 months, no clinical symptoms appeared, and prions were undetectable in any tissue by Western blot or immunohistochemistry. Protein misfolding cyclic amplification, however, revealed prions in the nerve and lymphoid tissues.
Journal Article
Preclinical Detection of Variant CJD and BSE Prions in Blood
by
Béringue, Vincent
,
EU FEDER inter-regional integration program [EFA205/11]; EU FP7 program
,
Groschup, Martin
in
Amino Acid Sequence
,
Animals
,
Biology and Life Sciences
2014
The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q(171) PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.
Journal Article
Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice
by
Béringue, Vincent
,
Andreoletti, Olivier
,
Pintado, Belen
in
Animals
,
Bone
,
Bovine spongiform encephalopathy
2011
A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated.
Journal Article
Evidence for zoonotic potential of ovine scrapie prions
2014
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Journal Article
Classical BSE prions emerge from asymptomatic pigs challenged with atypical/Nor98 scrapie
2021
Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrP
Sc
accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrP
Sc
accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.
Journal Article
BSE infectivity survives burial for five years with only limited spread
by
Gough, Kevin C
,
Hunter, Nora
,
Somerville, Robert A
in
Bovine spongiform encephalopathy
,
Carcasses
,
Chronic wasting disease
2019
The carcasses of animals infected with bovine spongiform encephalopathy (BSE), scrapie or chronic wasting disease (CWD) that remain in the environment (exposed or buried) may continue to act as reservoirs of infectivity. We conducted two experiments under near-field conditions to investigate the survival and dissemination of BSE infectivity after burial in a clay or sandy soil. BSE infectivity was either contained within a bovine skull or buried as an uncontained bolus of BSE-infected brain. Throughout the five-year period of the experiment, BSE infectivity was recovered in similar amounts from heads exhumed annually from both types of soil. Very low levels of infectivity were detected in the soil immediately surrounding the heads, but not in samples remote from them. Similarly, there was no evidence of significant lateral movement of infectivity from the buried bolus over 4 years although there was a little vertical movement in both directions. However, bioassay analysis of limited numbers of samples of rain water that had drained through the bolus clay lysimeter indicated that infectivity was present in filtrates. sPMCA analysis also detected low levels of PrPSc in the filtrates up to 25 months following burial, raising the concern that leakage of infectivity into ground water could occur. We conclude that transmissible spongiform encephalopathy infectivity is likely to survive burial for long periods of time, but not to migrate far from the site of burial unless a vector or rain water drainage transports it. Risk assessments of contaminated sites should take these findings into account.
Journal Article
Infectious prions in brains and muscles of domestic pigs experimentally challenged with the BSE, scrapie, and CWD agents
by
Barria, Marcelo A.
,
Greenlee, Justin J.
,
Telling, Glenn
in
Animals
,
Bovine spongiform encephalopathy
,
Brain
2025
Prions (PrP Sc ) are proteinaceous, infectious pathogens responsible for prion diseases. Some livestock are highly susceptible to prion diseases. These include cattle (bovine spongiform encephalopathy, BSE), sheep and goat (scrapie), and cervids (chronic wasting disease, CWD). Unfortunately, BSE has been reported to be naturally transmitted to humans and other animal species. Domestic pigs, a relevant livestock animal, have not been reported to be naturally affected by prions; however, they are susceptible to the experimental exposure to BSE, scrapie, and CWD prions. Given the widespread consumption of porcine food products by humans, we aimed to evaluate the levels of pig-derived BSE, scrapie, and CWD prions from experimentally challenged domestic pigs in brain and meat cuts (leg, cheek meat, skirt meat, and tenderloin). We detected pig-adapted prions in the brains and some muscles of these animals. Additionally, we evaluated the in vitro compatibility between pig prions and the human prion protein (as a surrogate of zoonosis). Our results show that only pig-derived BSE prions were able to induce the misfolding of the cellular human prion protein. This data highlights the consequences of prion spillovers to other animal species and their potential availability to humans.
Journal Article
Tracking and clarifying differential traits of classical- and atypical L-type bovine spongiform encephalopathy prions after transmission from cattle to cynomolgus monkeys
by
Sato, Yuko
,
Yamakawa, Yoshio
,
Horiuchi, Motohiro
in
Amino acid sequence
,
Amino acids
,
Analysis
2019
Classical- (C-) and atypical L-type bovine spongiform encephalopathy (BSE) prions cause different pathological phenotypes in cattle brains, and the disease-associated forms of each prion protein (PrPSc) has a dissimilar biochemical signature. Bovine C-BSE prions are the causative agent of variant Creutzfeldt-Jakob disease. To date, human infection with L-BSE prions has not been reported, but they can be transmitted experimentally from cows to cynomolgus monkeys (Macaca fascicularis), a non-human primate model. When transmitted to monkeys, C- and L-BSE prions induce different pathological phenotypes in the brain. However, when isolated from infected brains, the two prion proteins (PrPSc) have similar biochemical signatures (i.e., electrophoretic mobility, glycoforms, and resistance to proteinase K). Such similarities suggest the possibility that L-BSE prions alter their virulence to that of C-BSE prions during propagation in monkeys. To clarify this possibility, we conducted bioassays using inbred mice. C-BSE prions with or without propagation in monkeys were pathogenic to mice, and exhibited comparable incubation periods in secondary passage in mice. By contrast, L-BSE prions, either with or without propagation in monkeys, did not cause the disease in mice, indicating that the pathogenicity of L-BSE prions does not converge towards a C-BSE prion type in this primate model. These results suggest that, although C- and L-BSE prions propagated in cynomolgus monkeys exhibit similar biochemical PrPSc signatures and consist of the monkey amino acid sequence, the two prions maintain strain-specific conformations of PrPSc in which they encipher and retain unique pathogenic traits.
Journal Article
Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey
2013
Objectives To carry out a further survey of archived appendix samples to understand better the differences between existing estimates of the prevalence of subclinical infection with prions after the bovine spongiform encephalopathy epizootic and to see whether a broader birth cohort was affected, and to understand better the implications for the management of blood and blood products and for the handling of surgical instruments. Design Irreversibly unlinked and anonymised large scale survey of archived appendix samples.Setting Archived appendix samples from the pathology departments of 41 UK hospitals participating in the earlier survey, and additional hospitals in regions with lower levels of participation in that survey.Sample 32 441 archived appendix samples fixed in formalin and embedded in paraffin and tested for the presence of abnormal prion protein (PrP).Results Of the 32 441 appendix samples 16 were positive for abnormal PrP, indicating an overall prevalence of 493 per million population (95% confidence interval 282 to 801 per million). The prevalence in those born in 1941-60 (733 per million, 269 to 1596 per million) did not differ significantly from those born between 1961 and 1985 (412 per million, 198 to 758 per million) and was similar in both sexes and across the three broad geographical areas sampled. Genetic testing of the positive specimens for the genotype at PRNP codon 129 revealed a high proportion that were valine homozygous compared with the frequency in the normal population, and in stark contrast with confirmed clinical cases of vCJD, all of which were methionine homozygous at PRNP codon 129.Conclusions This study corroborates previous studies and suggests a high prevalence of infection with abnormal PrP, indicating vCJD carrier status in the population compared with the 177 vCJD cases to date. These findings have important implications for the management of blood and blood products and for the handling of surgical instruments.
Journal Article
Facilitated cross-species transmission of prions in extraneural tissue
by
Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
,
Le Dur, Annick
,
Béringue, Vincent
in
Agricultural sciences
,
Animals
,
Biological and medical sciences
2012
Prions are infectious pathogens essentially composed of PrPSc, an abnormally folded form of the host-encoded prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity and to control cross-species transmission into other host populations, including humans. We compared the ability of brain and lymphoid tissues from ovine and human PrP transgenic mice to replicate foreign, inefficiently transmitted prions. Lymphoid tissue was consistently more permissive than the brain to prions such as those causing chronic wasting disease and bovine spongiform encephalopathy. Furthermore, when the transmission barrier was overcome through strain shifting in the brain, a distinct agent propagated in the spleen, which retained the ability to infect the original host. Thus, prion cross-species transmission efficacy can exhibit a marked tissue dependence.
Journal Article