Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
99
result(s) for
"Endo-1,4-beta Xylanases - classification"
Sort by:
Metagenomic Insights into the Carbohydrate-Active Enzymes Carried by the Microorganisms Adhering to Solid Digesta in the Rumen of Cows
by
Catalyurek, Umit V.
,
Wang, Lingling
,
Morrison, Mark
in
Amino acids
,
Analysis
,
Animal sciences
2013
The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes) and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH) involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43) were well represented. A new subfamily (S-8) of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs) were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds) and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.
Journal Article
Identification of a Novel Fungus, Leptosphaerulina chartarum SJTU59 and Characterization of Its Xylanolytic Enzymes
by
Wu, Qiong
,
Zhang, Tailong
,
Li, Yingying
in
Agricultural engineering
,
Agriculture
,
Amino Acid Sequence
2013
Xylanolytic enzymes are widely used in processing industries, e.g., pulp and paper, food, livestock feeds, and textile. Furthermore, certain xylanotic enzymes have demonstrated the capability to improve the resistance and immunity of plants. Screening of high-yield microbial xylanolytic enzyme producers is significant for improving large-scale cost-effective xylanolytic enzyme production. This study provided new evidence of high-level xylanolytic enzyme production by a novel fungus, designated Leptosphaerulina chartarum SJTU59. Under laboratory conditions, L. chartarum SJTU59 produced xylanolytic enzymes of up to 17.566 U/mL (i.e., 878.307 U/g substrate). The enzyme solution was relatively stable over a wide range of pH (pH 3.0 to pH 9.0) and temperature (40°C to 65°C) while showing high resistance to the majority of metal ions tested. Composition analysis of the hydrolytic products of xylan showed sufficient degradation by xylanolytic enzymes from L. chartarum SJTU59, mainly the monosaccharide xylose, and a small amount of xylobiose were enzymatically produced; whereas in the presence of sufficient xylan substrates, mainly xylooligosaccharides, an emerging prebiotic used in food industry, were produced. In addition, the xylanolytic enzyme preparation from L. chartarum SJTU59 could initiate tissue necrosis and oxidative burst in tobacco leaves, which may be related to enhanced plant defense to adversity and disease. L. chartarum SJTU59 possessed a complex xylanolytic enzyme system, from which two novel endo-β-1,4-xylanases of the glycoside hydrolase (GH) family 10, one novel endo-β-1,4-xylanase of the GH family 11, and one novel β-xylosidase of the GH family 43 were obtained via rapid amplification of complementary DNA ends. Given the high yield and stable properties of xylanolytic enzymes produced by L. chartarum SJTU59, future studies will be conducted to characterize the properties of individual xylanolytic enzymes from L. chartarum SJTU59. xylanolytic enzymes-encoding gene(s) of potential use for industrial and agricultural applications will be screened to construct genetically engineered strains.
Journal Article
Factors affecting xylanase functionality in the degradation of arabinoxylans
2008
Endo-β-1,4-xylanases are key enzymes in the degradation of arabinoxylans, the main non-starch polysaccharides from grain cell walls. Due to the heterogeneity of arabinoxylans, xylanases with different characteristics are required in industrial applications but the choice of the enzyme is still largely empirical. Although the classification into glycoside hydrolase families greatly helped to derive mechanistic information on the catalytic and substrate specificity of xylanases, other factors e.g. their sensitivity to endogenous inhibitors, the presence of carbohydrate-binding module(s) and their degree of selectivity towards soluble versus insoluble substrate may play a role in determining the functionality of these enzymes in the degradation of arabinoxylans.
Journal Article
Phylogenetic Diversity and Environment-Specific Distributions of Glycosyl Hydrolase Family 10 Xylanases in Geographically Distant Soils
by
Luo, Huiying
,
Zhang, Zhifang
,
Yang, Peilong
in
Agriculture
,
Amino acids
,
Bacteria - classification
2012
Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed.
Partial xylanase genes of glycoside hydrolase (GH) family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with our previous study, a total of 1084 gene fragments were obtained, representing 366 OTUs. More than half of the OTUs were novel (identities of <65% with known xylanases) and had no close relatives based on phylogenetic analyses. Xylanase genes from all the soil environments were mainly distributed in Bacteroidetes, Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Dictyoglomi and some fungi. Although identical sequences were found in several sites, habitat-specific patterns appeared to be important, and geochemical factors such as pH and oxygen content significantly influenced the compositions of xylan-degrading microbial communities.
These results provide insight into the GH 10 xylanases in various soil environments and reveal that xylan-degrading microbial communities are environment specific with diverse and abundant populations.
Journal Article
Enzymatic bleaching of organosolv sugarcane bagasse pulps with recombinant xylanase of the fungus Humicola grisea and with commercial Cartazyme HS xylanase
by
Goncalves, A.R
,
Faria, F.P
,
Moriya, R.Y
in
Ascomycota - enzymology
,
Ascomycota - genetics
,
Bacillus - enzymology
2005
Organosolv (ethanol/water and acetosolv) pulps were treated with Humicola grisea var. thermoidea and compared with Cartazyme HS xylanase-treated pulp. The ethanol/water pulps treated with H. grisea had the same viscosity as unbleached pulps (8 cP). Ethanol/water pulps treated with Cartazyme had higher viscosity than H. grisea-treated pulps (12 cP). Acetosolv pulps treated with H. grisea and Cartazyme presented a reduction in viscosity; however, the pulps treated with H. grisea had a lower reduction in viscosity than Cartazyme-treated pulps. Ethanol/water pulps treated with H. grisea had a 23% reduction in kappa number in 4 and 8 h of treatment, compared with the unbleached pulps. Cartazyme-treated pulps had a kappa number similar to that of the control pulps for 4 h of treatment. Extending the treatment time to 12 h resulted in a reduction of 33%. The acetosolv pulp treated with H. grisea had a kappa number reduced to 23% in 4 h. Cartazyme treatment resulted in a reduction of 55 and 44% in kappa number for 4 and 8 h of treatment, respectively, when compared with control pulp. Extending the treatment time to 12 h decreased the kappa number 72%. Fourier transform infrared spectra and principal component analysis showed differences among unbleached, H. grisea-treated, and Cartazyme-treated pulps.
Journal Article
Sugarcane Bagasse Pulps: Biobleaching with Commercial Cartazyme HS and with Bacillus pumilus Xylanase
by
Duarte, Marta C. T.
,
Moriya, Regina Y.
,
Gonçalves, Adilson R.
in
Bacillus - enzymology
,
Bacillus pumilus
,
Bacteria
2005
Organosolv (ethanol/water and acetosolv) pulps were treated with Bacillus pumilus xylanase for 4, 8, and 12 h and compared with commercial Cartazyme HS xylanase-treated pulps. Treatment of ethanol/water pulps with B. pumilus xylanase increased viscosity by 40% in 8 h of treatment compared with pulps treated without enzyme. However, acetosolv pulps treated with B. pumilus xylanase lost viscosity. Ethanol/water pulps treated with Cartazyme had a viscosity of 18.5 cP in 4 h of treatment. In the acetosolv pulps treated with commercial enzyme, the loss of viscosity was 20% compared with pulps treated without enzyme. Ethanol/water pulps treated with B. pumilus and Cartazyme had similar effects: a 44% reduction in kappa number for pulps treated with enzyme followed by alkaline extraction compared with pulps treated with alkaline extraction. In acetosolv pulps treated with B. pumilus, the kappa number was from 12 to 18, compared with pulps treated without enzyme, which had a 40% reduction in 4 and 12 h and a 60% reduction in 8 h. Cartazyme-treated acetosolv pulps had a kappa number of 14 in 4 and 8 h of treatment. For 12 h of treatment, the kappa number was 8. Fourier transform infrared spectra of the pulps showed that enzyme-treated pulps had changes in the 1000 cm-1 absorption owing to a C-O bond present in esters. Using principal component analysis, it is possible to differentiate the unbleached pulps and enzyme-treated pulps.
Journal Article
Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives
by
Marín-Navarro, Julia
,
Kumar, Vishal
,
Shukla, Pratyoosh
in
Applied Microbiology
,
Bacteria
,
Bacteria - enzymology
2016
Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches.
Journal Article
Heterologous expression and structure prediction of a xylanase identified from a compost metagenomic library
2024
Xylanases are key biocatalysts in the degradation of the β‐1,4‐glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-β-xylanase belonging to glycosyl hydrolase family 10 (GH10). When
xyl4
was expressed in
Escherichia coli
BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications.
Key points
•
A GH10 endo-1,4-β-xylanase (Xyl4) was isolated from a compost metagenomic library
•
MATLAB’s in-house functions were developed to identify the xylanase-producing clones
•
Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis
Graphical abstract
Journal Article
The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase
2020
BackgroundXylanase with high specific activity plays a crucial role in hemicellulose biodegradation and has important industrial application. The amino acids located in the active site determine the enzyme biological characterization. In this study, structure bioinformatics analysis and alanine screening experiments were performed to explore the roles of amino acids at each subsite of the GH11 xylanase active site.ResultsThere are highly conserved amino acids at − 2 to + 1 subsites, and the network of the interactions is concentrated near the catalytic sites (E86, E178). However, the amino acids at relatively distal subsites, especially at the + 2 and + 3 subsites, are few but diverse. Alanine substitution of amino acids in the active site architecture exerted different impacts on catalytic efficiency. Interestingly, mutants Y180A at the + 2 subsite and Y96A at the + 3 subsite had reduced enzymatic activities by almost 95%, which indicate that these two aromatic residues are necessary for the catalysis of substrates in addition to the highly conserved residues at the − 2 and + 1 subsites. Moreover, in these two subsites, aromatic amino acids with different side-chain properties also affected enzyme activity. The mutants Y180W and Y96W showed 6.2% and 12.8% increase in specific activities by comparison with wild-type enzyme at 50 °C, respectively.ConclusionWe elucidated the interaction between amino acids and substrates in the active site, which will aid understanding of the protein-ligand interaction in enzyme engineering.Key points• Xylanase of GH11 family is a good industrial candidate.• The roles of residues at each subsite of GH11 xylanase active site are explored.• The two aromatic residues at the + 2 and + 3 subsites are necessary for the catalysis.• Y180W and Y96W increased the enzymatic activity by 6.2% and 12.8% at low temperature.
Journal Article
Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: uncovering plant cell-wall degrading bacteria
by
Zhang, Daoyuan
,
Bozorov, Tohir A.
,
Rasulov, Bakhtiyor A.
in
631/326/171
,
631/601/1466
,
Agrilus
2019
The genus
Agrilus
comprises diverse exotic and agriculturally important wood-boring insects that have evolved efficient digestive systems.
Agrilus mali
Matsumara, an invasive insect, is causing extensive mortality to endangered wild apple trees in Tianshan. In this study, we present an in-depth characterization of the gut microbiota of
A. mali
based on high-throughput sequencing of the 16S rRNA gene and report the presence of lignocellulose-degrading bacteria. Thirty-nine operational taxonomic units (OTUs) were characterized from the larval gut. OTUs represented 6 phyla, 10 classes, 16 orders, 20 families, and 20 genera. The majority of bacterial OTUs belonged to the order Enterobacteriales which was the most abundant taxa in the larval gut. Cultivable bacteria revealed 9 OTUs that all belonged to Gammaproteobacteria. Subsequently, we examined the breakdown of plant cell-wall compounds by bacterial isolates. Among the isolates, the highest efficiency was observed in
Pantoea
sp., which was able to synthesize four out of the six enzymes (cellulase, cellobiase, β-xylanase, and β-gluconase) responsible for plant-cell wall degradation. One isolate identified as
Pseudomonas orientalis
exhibited lignin peroxidase activity. Our study provides the first characterization of the gut microbial diversity of
A. mali
larvae and shows that some cultivable bacteria play a significant role in the digestive tracts of larvae by providing nutritional needs.
Journal Article