Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,043 result(s) for "Endotoxins"
Sort by:
The effects of extracorporeal blood purification (oXiris®) in patients with cardiogenic shock who require VA-ECMO (CLEAN ECMO): a prospective, open-label, randomized controlled pilot study
Background A systemic inflammatory response can contribute to poor outcomes in an advanced stage of cardiogenic shock (CS). We investigated the efficacy of extracorporeal endotoxin and cytokine adsorption using oXiris in patients with CS undergoing venoarterial extracorporeal membrane oxygenation (VA-ECMO). Methods In this prospective, single-center, randomized, open-label pilot trial, 40 patients with CS who were undergoing VA-ECMO were randomly assigned to receive either oXiris for 24 h ( n  = 20) or usual care ( n  = 20). The primary endpoint was endotoxin levels at 48 h. Secondary endpoints included changes in inflammatory cytokines, vasoactive-inotropic score (VIS), ECMO weaning success, and in-hospital and 30-day mortality. Results The median endotoxin levels at 48 h were 0.5 (IQR 0.4–1.0) in the oXiris group and 0.4 (IQR 0.2–0.5) in the control group, with no significant difference between them ( P  = 0.097). The oXiris group showed significant temporal reductions in GDF-15 and IL-6 levels, with IL-6 revealing significant reductions from baseline to 24 h ( P  = 0.020) and from baseline to 7 days ( P  = 0.003). VIS decreased significantly from baseline to 48 h (-13.63, 95% CI: -20.90 – -6.34, P  < 0.001) and 7 days (-12.19, 95% CI: -21.0 – -3.31, P  = 0.007) in the oXiris group, but intergroup differences were insignificant. ECMO weaning success, duration of ECMO support, and mortality rates were similar between the groups. Conclusion In this pilot study conducted on CS patients requiring VA-ECMO, oXiris treatment did not significantly reduce endotoxin levels or improve patient centered clinical outcomes. Trial registration NCT05642273, registered 8 December 2022.
NF-kappaB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance
Tolerance to endotoxins that is triggered by prior exposure to Toll-like receptor (TLR) ligands provides a mechanism with which to dampen inflammatory cytokines. The receptor-interacting protein RIP140 interacts with the transcription factor NF-κB to regulate the expression of genes encoding proinflammatory cytokines. Here we found lipopolysaccharide stimulation of kinase Syk-mediated tyrosine phosphorylation of RIP140 and interaction of the NF-κB subunit RelA with RIP140. These events resulted in more recruitment of the E3 ligase SCF to tyrosine-phosphorylated RIP140, which degraded RIP140 to inactivate genes encoding inflammatory cytokines. Macrophages expressing nondegradable RIP140 were resistant to the establishment of endotoxin tolerance for specific 'tolerizable' genes. Our results identify RelA as an adaptor with which SCF fine tunes NF-κB target genes by targeting the coactivator RIP140 and show an unexpected role for RIP140 degradation in resolving inflammation and endotoxin tolerance.
The endotoxin hypothesis of neurodegeneration
The endotoxin hypothesis of neurodegeneration is the hypothesis that endotoxin causes or contributes to neurodegeneration. Endotoxin is a lipopolysaccharide (LPS), constituting much of the outer membrane of gram-negative bacteria, present at high concentrations in gut, gums and skin and in other tissue during bacterial infection. Blood plasma levels of endotoxin are normally low, but are elevated during infections, gut inflammation, gum disease and neurodegenerative disease. Adding endotoxin at such levels to blood of healthy humans induces systemic inflammation and brain microglial activation. Adding high levels of endotoxin to the blood or body of rodents induces microglial activation, priming and/or tolerance, memory deficits and loss of brain synapses and neurons. Endotoxin promotes amyloid β and tau aggregation and neuropathology, suggesting the possibility that endotoxin synergises with different aggregable proteins to give different neurodegenerative diseases. Blood and brain endotoxin levels are elevated in Alzheimer’s disease, which is accelerated by systemic infections, including gum disease. Endotoxin binds directly to APOE, and the APOE4 variant both sensitises to endotoxin and predisposes to Alzheimer’s disease. Intestinal permeability increases early in Parkinson’s disease, and injection of endotoxin into mice induces α-synuclein production and aggregation, as well as loss of dopaminergic neurons in the substantia nigra. The gut microbiome changes in Parkinson’s disease, and changing the endotoxin-producing bacterial species can affect the disease in patients and mouse models. Blood endotoxin is elevated in amyotrophic lateral sclerosis, and endotoxin promotes TDP-43 aggregation and neuropathology. Peripheral diseases that elevate blood endotoxin, such as sepsis, AIDS and liver failure, also result in neurodegeneration. Endotoxin directly and indirectly activates microglia that damage neurons via nitric oxide, oxidants and cytokines, and by phagocytosis of synapses and neurons. The endotoxin hypothesis is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin levels or endotoxin-induced neuroinflammation.
Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation
Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. We identified specific clusters of SPM in human plasma and serum using LC-MS/MS based lipid mediator (LM) metabololipidomics in two separate laboratories for inter-laboratory validation. The human plasma cluster consisted of resolvin (Rv)E1, RvD1, lipoxin (LX)B 4 , 18-HEPE, and 17-HDHA, and the human serum cluster consisted of RvE1, RvD1, AT-LXA 4 , 18-HEPE, and 17-HDHA. Human plasma and serum SPM clusters were increased after ω-3 supplementation (triglyceride dietary supplements or prescription ethyl esters) and low dose intravenous lipopolysaccharide (LPS) challenge. These results were corroborated by parallel determinations with the same coded samples in a second, separate laboratory using essentially identical metabololipidomic operational parameters. In these healthy subjects, two ω-3 supplementation protocols (Study A and Study B) temporally increased the SPM cluster throughout the endotoxin-challenge time course. Study A and Study B were randomized and Study B also had a crossover design with placebo and endotoxin challenge. Endotoxin challenge temporally regulated lipid mediator production in human serum, where pro-inflammatory eicosanoid (prostaglandins and thromboxane) concentrations peaked by 8 hours post-endotoxin and SPMs such as resolvins and lipoxins initially decreased by 2 h and were then elevated at 24 hours. In healthy adults given ω-3 supplementation, the plasma concentration of the SPM cluster (RvE1, RvD1, LXB 4 , 18-HEPE, and 17-HDHA) peaked at two hours post endotoxin challenge. These results from two separate laboratories with the same samples provide evidence for temporal production of specific pro-resolving mediators with ω-3 supplementation that together support the role of SPM in vivo in inflammation-resolution in humans.
Reversal of Immunoparalysis in Humans In Vivo
Reversal of sepsis-induced immunoparalysis may reduce the incidence of secondary infections and improve outcome. Although IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) restore immune competence of ex vivo stimulated leukocytes of patients with sepsis, effects on immunoparalysis in vivo are not known. To investigate the effects of IFN-γ and GM-CSF on immunoparalysis in vivo in humans. We performed a double-blind, placebo-controlled, randomized study in 18 healthy male volunteers that received Escherichia coli endotoxin (LPS; 2 ng/kg, intravenously) on days 1 and 7 (visits 1 and 2). On days 2, 4, and 6, subjects received subcutaneous injections of IFN-γ (100 μg/day; n = 6), GM-CSF (4 μg/kg/day; n = 6), or placebo (NaCl 0.9%; n = 6). In the placebo group, immunoparalysis was illustrated by a 60% (48-71%) reduction of LPS-induced tumor necrosis factor (TNF)-α plasma concentrations during visit 2 (P = 0.03), whereas the antiinflammatory IL-10 response was not significantly attenuated (39% [2-65%]; P = 0.15). In contrast, in the IFN-γ group, TNF-α concentrations during visit 2 were not significantly attenuated (28% [1-47%]; P = 0.09), whereas the IL-10 response was significantly lower (reduction of 54% [47-66%]; P = 0.03). Compared with the placebo group, the reduction in the LPS-induced TNF-α response during visit 2 was significantly less pronounced in the IFN-γ group (P = 0.01). Moreover, compared with placebo, treatment with IFN-γ increased monocyte HLA-DR expression (P = 0.02). The effects of GM-CSF tended in the same direction as IFN-γ, but were not statistically significant compared with placebo. IFN-γ partially reverses immunoparalysis in vivo in humans. These results suggest that IFN-γ is a promising treatment option to reverse sepsis-induced immunoparalysis.
Residual Endotoxin Contaminations in Recombinant Proteins Are Sufficient to Activate Human CD1c+ Dendritic Cells
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002-2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.
Pushing the envelope: LPS modifications and their consequences
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.Lipopolysaccharide is a key component of the Gram-negative cell envelope and functions, for example, as a permeability barrier or determinant of host immune responses. In this Review, Simpson and Trent guide us through lipopolysaccharide biogenesis and modifications and their functional and therapeutic implications.
Morphine activates neuroinflammation in a manner parallel to endotoxin
Opioids create a neuroinflammatory response within the CNS, compromising opioid-induced analgesia and contributing to various unwanted actions. How this occurs is unknown but has been assumed to be via classic opioid receptors. Herein, we provide direct evidence that morphine creates neuroinflammation via the activation of an innate immune receptor and not via classic opioid receptors. We demonstrate that morphine binds to an accessory protein of Toll-like receptor 4 (TLR4), myeloid differentiation protein 2 (MD-2), thereby inducing TLR4 oligomerization and triggering proinflammation. Small-molecule inhibitors, RNA interference, and genetic knockout validate the TLR4/MD-2 complex as a feasible target for beneficially modifying morphine actions. Disrupting TLR4/MD-2 protein–protein association potentiated morphine analgesia in vivo and abolished morphine-induced proinflammation in vitro, the latter demonstrating that morphine-induced proinflammation only depends on TLR4, despite the presence of opioid receptors. These results provide an exciting, nonconventional avenue to improving the clinical efficacy of opioids.
Dose-Dependent Effects of Endotoxin on Neurobehavioral Functions in Humans
Clinical and experimental evidence document that inflammation and increased peripheral cytokine levels are associated with depression-like symptoms and neuropsychological disturbances in humans. However, it remains unclear whether and to what extent cognitive functions like memory and attention are affected by and related to the dose of the inflammatory stimulus. Thus, in a cross-over, double-blind, experimental approach, healthy male volunteers were administered with either placebo or bacterial lipopolysaccharide (LPS) at doses of 0.4 (n = 18) or 0.8 ng/kg of body weight (n = 16). Pro- and anti-inflammatory cytokines, norephinephrine and cortisol concentrations were analyzed before and 1, 1.75, 3, 4, 6, and 24 h after injection. In addition, changes in mood and anxiety levels were determined together with working memory (n-back task) and long term memory performance (recall of emotional and neutral pictures of the International Affective Picture System). Endotoxin administration caused a profound transient physiological response with dose-related elevations in body temperature and heart rate, increases in plasma interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α and IL-1 receptor antagonist (IL-1ra), salivary and plasma cortisol, and plasma norepinephrine. These changes were accompanied by dose-related decreased mood and increased anxiety levels. LPS administration did not affect accuracy in working memory performance but improved reaction time in the high-dose LPS condition compared to the control conditon. In contrast, long-term memory performance was impaired selectively for emotional stimuli after administration of the lower but not of the higher dose of LPS. These data suggest the existence of at least two counter-acting mechanisms, one promoting and one inhibiting cognitive performance during acute systemic inflammation.