Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
28,647
result(s) for
"Energy Intake"
Sort by:
Why calories count : from science to politics
\"Calories--too few or too many--are the source of health problems affecting billions of people in today's globalized world. Although calories are essential to human health and survival, they cannot be seen, smelled, or tasted. They are also hard to understand. In Why Calories Count, Marion Nestle and Malden Nesheim explain in clear and accessible language what calories are and how they work, both biologically and politically. As they take readers through the issues that are fundamental to our understanding of diet and food, weight gain, loss, and obesity, Nestle and Nesheim sort through a great deal of the misinformation put forth by food manufacturers and diet program promoters. They elucidate the political stakes and show how federal and corporate policies have come together to create an \"eat more\" environment. Finally, having armed readers with the necessary information to interpret food labels, evaluate diet claims, and understand evidence as presented in popular media, the authors offer some candid advice: Get organized. Eat less. Eat better. Move more. Get political\"--Provided by publisher.
GDF15 mediates the effects of metformin on body weight and energy balance
2020
Metformin, the world’s most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk
1
,
2
. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner
3
. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show—in two independent randomized controlled clinical trials—that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with
GDF15
expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent.
In mouse studies, metformin treatment results in increased secretion of growth/differentiation factor 15 (GDF15), which prevents weight gain in response to high-fat diet, and GDF15-independent lowering of circulating blood glucose.
Journal Article
Oxytocin’s inhibitory effect on food intake is stronger in obese than normal-weight men
2016
Background/Objectives:
Animal studies and pilot experiments in men indicate that the hypothalamic neuropeptide oxytocin limits food intake, and raise the question of its potential to improve metabolic control in obesity.
Subjects/Methods:
We compared the effect of central nervous oxytocin administration (24 IU) via the intranasal route on ingestive behaviour and metabolic function in 18 young obese men with the results in a group of 20 normal-weight men. In double-blind, placebo-controlled experiments,
ad libitum
food intake from a test buffet was examined in fasted subjects 45 min after oxytocin administration, followed by the assessment of postprandial, reward-driven snack intake. Energy expenditure was repeatedly assessed by indirect calorimetry and blood was sampled to determine concentrations of blood glucose and hormones.
Results:
Oxytocin markedly reduced hunger-driven food intake in the fasted state in obese but not in normal-weight men, and led to a reduction in snack consumption in both groups, whereas energy expenditure remained generally unaffected. Hypothalamic–pituitary–adrenal axis secretion and the postprandial rise in plasma glucose were blunted by oxytocin in both groups.
Conclusions:
Oxytocin exerts an acutely inhibitory impact on food intake that is enhanced rather than decreased in obese compared with normal-weight men. This pattern puts it in contrast to other metabolically active neuropeptides and bodes well for clinical applications of oxytocin in the treatment of metabolic disorders.
Journal Article
Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake
2017
Background:
Substituting sweeteners with non-nutritive sweeteners (NNS) may aid in glycaemic control and body weight management. Limited studies have investigated energy compensation, glycaemic and insulinaemic responses to artificial and natural NNS.
Objectives:
This study compared the effects of consuming NNS (artificial versus natural) and sucrose (65 g) on energy intake, blood glucose and insulin responses.
Methods:
Thirty healthy male subjects took part in this randomised, crossover study with four treatments: aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages. On each test day, participants were asked to consume a standardised breakfast in the morning, and they were provided with test beverage as a preload in mid-morning and
ad libitum
lunch was provided an hour after test beverage consumption. Blood glucose and insulin concentrations were measured every 15 min within the first hour of preload consumption and every 30 min for the subsequent 2 h. Participants left the study site 3 h after preload consumption and completed a food diary for the rest of the day.
Results:
Ad libitum
lunch intake was significantly higher for the NNS treatments compared with sucrose (
P
=0.010). The energy 'saved' from replacing sucrose with NNS was fully compensated for at subsequent meals; hence, no difference in total daily energy intake was found between the treatments (
P
=0.831). The sucrose-sweetened beverage led to large spikes in blood glucose and insulin responses within the first hour, whereas these responses were higher for all three NNS beverages following the test lunch. Thus, there were no differences in total area under the curve (AUC) for glucose (
P
=0.960) and insulin (
P
=0.216) over 3 h between the four test beverages.
Conclusions:
The consumption of calorie-free beverages sweetened with artificial and natural NNS have minimal influences on total daily energy intake, postprandial glucose and insulin compared with a sucrose-sweetened beverage.
Journal Article
Effect of alcohol consumption on food energy intake: a systematic review and meta-analysis
2019
The relationship between alcohol consumption and body weight is complex and inconclusive being potentially mediated by alcohol type, habitual consumption levels and sex differences. Heavy and regular alcohol consumption has been positively correlated with increasing body weight, although it is unclear whether this is due to alcohol consumption per se or to additional energy intake from food. This review explores the effects of alcohol consumption on food energy intake in healthy adults. CINAHL Plus, EMBASE, Medline and PsycINFO were searched through February 2018 for crossover and randomised controlled trials where an alcohol dose was compared with a non-alcohol condition. Study quality was assessed using the Effective Public Health Practice Project tool. A total of twenty-two studies involving 701 participants were included from the 18 427 papers retrieved. Studies consistently demonstrated no compensation for alcoholic beverage energy intake, with dietary energy intake not decreasing due to alcoholic beverage ingestion. Meta-analyses using the random-effects model were conducted on twelve studies and demonstrated that alcoholic beverage consumption significantly increased food energy intake and total energy intake compared with a non-alcoholic comparator by weighted mean differences of 343 (95 % CI 161, 525) and 1072 (95 % CI 820, 1323) kJ, respectively. Generalisability is limited to younger adults (18–37 years), and meta-analyses for some outcomes had substantial statistical heterogeneity or evidence of small-study effects. This review suggests that adults do not compensate appropriately for alcohol energy by eating less, and a relatively modest alcohol dose may lead to an increase in food consumption.
Journal Article
Association of eating speed and energy intake of main meals with overweight in Chinese pre-school children
by
Jin, Runming
,
Pan, Liping
,
Tang, Lixia
in
Air. Soil. Water. Waste. Feeding
,
Biological and medical sciences
,
Body Mass Index
2014
To investigate the association between eating behaviours (eating speed and energy intake of main meals) and overweight in pre-school children.
Cross-sectional study. Data consisted of measurements (height and weight), questionnaire information (eating behaviours of eating speed and overeating) and on-site observation data (meal duration and energy intake of main meals).
Seven kindergartens in Beijing, China.
Pre-school children (n 1138; age range 3·1-6·7 years old) from seven kindergartens participated in the study.
The multivariate-adjusted odds ratio of overweight in participants with parent-reported 'more than needed food intake' was 3·02 (95 % CI 2·06, 4·44) compared with the 'medium food intake' participants, and higher eating speed was associated with childhood overweight. For the two observed eating behaviours, each 418·7 kJ (100 kcal) increase of lunch energy intake significantly increased the likelihood for overweight by a factor of 1·445, and each 5-min increase in meal duration significantly decreased the likelihood for overweight by a factor of 0·861. Increased portions of rice and cooked dishes were significantly associated with overweight status (OR = 2·274; 95 % CI 1·360, 3·804 and OR = 1·378; 95 % CI 1·010, 1·881, respectively).
Eating speed and excess energy intake of main meals are associated with overweight in pre-school children.
Journal Article
Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study
by
Hartmann, Bolette
,
Bergmann, Natasha C
,
Gasbjerg, Lærke S
in
Appetite
,
Body weight
,
Diabetes mellitus
2019
Aims/hypothesisGlucagon-like peptide 1 (GLP-1) reduces appetite and energy intake in humans, whereas the other incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), seems to have no effect on eating behaviour. Interestingly, studies in rodents have shown that concomitant activation of GIP and GLP-1 receptors may potentiate the satiety-promoting effect of GLP-1, and a novel dual GLP-1/GIP receptor agonist was recently shown to trigger greater weight losses compared with a GLP-1 receptor agonist in individuals with type 2 diabetes. The aim of this study was to delineate the effects of combined GIP and GLP-1 receptor activation on energy intake, appetite and resting energy expenditure in humans.MethodsWe examined 17 overweight/obese men in a crossover design with 5 study days. On day 1, a 50 g OGTT was performed; on the following 4 study days, the men received an isoglycaemic i.v. glucose infusion (IIGI) plus saline (154 mmol/l NaCl; placebo), GIP (4 pmol kg−1 min−1), GLP-1 (1 pmol kg−1 min−1) or GIP+GLP-1 (4 and 1 pmol kg−1 min−1, respectively). All IIGIs were performed in a randomised order blinded for the participant and the investigators. The primary endpoint was energy intake as measured by an ad libitum meal after 240 min. Secondary endpoints included appetite ratings and resting energy expenditure, as well as insulin, C-peptide and glucagon responses.ResultsEnergy intake was significantly reduced during IIGI+GLP-1 compared with IIGI+saline infusion (2715 ± 409 vs 4483 ± 568 kJ [mean ± SEM, n = 17], p = 0.014), whereas there were no significant differences in energy intake during IIGI+GIP (4062 ± 520 kJ) or IIGI+GIP+GLP-1 (3875 ± 451 kJ) infusion compared with IIGI+saline (p = 0.590 and p = 0.364, respectively). Energy intake was higher during IIGI+GIP+GLP-1 compared with IIGI+GLP-1 infusion (p = 0.039).Conclusions/interpretationWhile GLP-1 infusion lowered energy intake in overweight/obese men, simultaneous GIP infusion did not potentiate this GLP-1-mediated effect.Trial registrationClinicalTrials.gov NCT02598791FundingThis study was supported by grants from the Innovation Fund Denmark and the Vissing Foundation.
Journal Article
Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults
2014
Introduction:
Mechanisms for liraglutide-induced weight loss are poorly understood.
Objective:
We investigated the effects of liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese non-diabetic individuals.
Design:
Participants (
N
=49, 18–75 years, body mass index: 30–40 kg m
−2
) were randomized to two of three treatments: liraglutide 1.8 mg, 3.0 mg, or placebo in a double-blind, incomplete crossover trial. After 5 weeks, 24-h energy expenditure (EE) and substrate oxidation were measured in a respiratory chamber. Gastric emptying (acetaminophen absorption method), glycemic parameters and appetite were assessed during a 5-h meal test.
Ad libitum
energy intake during a subsequent lunch was also assessed.
Results:
Five-hour gastric emptying (AUC
0–300 min
) was found to be equivalent for liraglutide 1.8 versus 3.0 mg (primary end point), and for both liraglutide doses versus placebo, as 90% confidence intervals for the estimated treatment ratios were contained within the prespecified interval (0.80–1.25). However, 1-h gastric emptying was 23% lower than placebo with liraglutide 3.0 mg (
P
=0.007), and a nonsignificant 13% lower than placebo with liraglutide 1.8 mg (
P
=0.14). Both liraglutide doses similarly reduced fasting glucose (0.5–0.6 mmol l
−1
versus placebo,
P
<0.0001), glucose C
max
and 1-h AUC versus placebo; only liraglutide 3.0 mg reduced iAUC
0–300 min
(by ∼26% versus placebo,
P
=0.02). Glucagon iAUC
0–300 min
decreased by ∼30%, and iAUC
0–60 min
for insulin and C-peptide was ∼20% lower with both liraglutide doses versus placebo. Liraglutide doses similarly increased mean postprandial satiety and fullness ratings, reduced hunger and prospective food consumption and decreased
ad libitum
energy intake by ∼16%. Liraglutide-associated reductions in EE were partly explained by a decrease in body weight. A relative shift toward increased fat and reduced carbohydrate oxidation was observed with liraglutide. Clinicaltrials.gov ID:NCT00978393. Funding: Novo Nordisk.
Conclusion:
Gastric emptying AUC
0–300 min
was equivalent for liraglutide 1.8 and 3.0 mg, and for liraglutide versus placebo, whereas reductions in 1-h gastric emptying of 23% with liraglutide 3.0 mg and 13% with 1.8 mg versus placebo were observed. Liraglutide 3.0 mg improved postprandial glycemia to a greater extent than liraglutide 1.8 mg. Liraglutide-induced weight loss appears to be mediated by reduced appetite and energy intake rather than increased EE.
Journal Article
Obesity: global epidemiology and pathogenesis
2019
The prevalence of obesity has increased worldwide in the past ~50 years, reaching pandemic levels. Obesity represents a major health challenge because it substantially increases the risk of diseases such as type 2 diabetes mellitus, fatty liver disease, hypertension, myocardial infarction, stroke, dementia, osteoarthritis, obstructive sleep apnoea and several cancers, thereby contributing to a decline in both quality of life and life expectancy. Obesity is also associated with unemployment, social disadvantages and reduced socio-economic productivity, thus increasingly creating an economic burden. Thus far, obesity prevention and treatment strategies — both at the individual and population level — have not been successful in the long term. Lifestyle and behavioural interventions aimed at reducing calorie intake and increasing energy expenditure have limited effectiveness because complex and persistent hormonal, metabolic and neurochemical adaptations defend against weight loss and promote weight regain. Reducing the obesity burden requires approaches that combine individual interventions with changes in the environment and society. Therefore, a better understanding of the remarkable regional differences in obesity prevalence and trends might help to identify societal causes of obesity and provide guidance on which are the most promising intervention strategies.The prevalence of obesity has increased worldwide in the past ~50 years, reaching pandemic levels. Remarkable regional differences exist in obesity prevalence and trends, which might help to identify societal causes of obesity and provide guidance for the most promising intervention strategies.
Journal Article
Energy expenditure and nutrient intake after spinal cord injury: a comprehensive review and practical recommendations
2022
Many persons with spinal cord injury (SCI) have one or more preventable chronic diseases related to excessive energetic intake and poor eating patterns. Appropriate nutrient consumption relative to need becomes a concern despite authoritative dietary recommendations from around the world. These recommendations were developed for the non-disabled population and do not account for the injury-induced changes in body composition, hypometabolic rate, hormonal dysregulation and nutrition status after SCI. Because evidence-based dietary reference intake values for SCI do not exist, ensuring appropriate consumption of macronutrient and micronutrients for their energy requirements becomes a challenge. In this compressive review, we briefly evaluate aspects of energy balance and appetite control relative to SCI. We report on the evidence regarding energy expenditure, nutrient intake and their relationship after SCI. We compare these data with several established nutritional guidelines from American Heart Association, Australian Dietary Guidelines, Dietary Guidelines for Americans, Institute of Medicine Dietary Reference Intake, Public Health England Government Dietary Recommendations, WHO Healthy Diet and the Paralyzed Veterans of America (PVA) Clinical Practice Guidelines. We also provide practical assessment and nutritional recommendations to facilitate a healthy dietary pattern after SCI. Because of a lack of strong SCI research, there are currently limited dietary recommendations outside of the PVA guidelines that capture the unique nutrient needs after SCI. Future multicentre clinical trials are needed to develop comprehensive, evidence-based dietary reference values specific for persons with SCI across the care continuum that rely on accurate, individual assessment of energy need.
Journal Article