Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
778,519
result(s) for
"Energy management"
Sort by:
Analysis of energy systems : management, planning and policy
The aim of this book is to bring together a number of selected contributions regarding the analysis of energy systems from several experts globally. The book gives an overview of various issues regarding energy systems, including the analysis of specific local contexts. The book aims to contribute to the current debate related to the evolution of energy systems, including the high penetration of renewables, by discussing in an open way the pros and cons without any pre-constitute point of view.
A Review on Optimal Energy Management in Commercial Buildings
by
Hanafi, Ainain. N.
,
Sulaima, Mohamad. F.
,
Hossain, Jahangir
in
Air conditioning
,
Alternative energy sources
,
Analysis
2023
The rising cost and demand for energy have prompted the need to devise innovative methods for energy monitoring, control, and conservation. In addition, statistics show that 20% of energy losses are due to the mismanagement of energy. Therefore, the utilization of energy management can make a substantial contribution to reducing the unnecessary usage of energy consumption. In line with that, the intelligent control and optimization of energy management systems integrated with renewable energy resources and energy storage systems are required to increase building energy efficiency while considering the reduction in the cost of energy bills, dependability of the grid, and mitigating carbon emissions. Even though a variety of optimization and control tactics are being utilized to reduce energy consumption in buildings nowadays, several issues remain unsolved. Therefore, this paper presents a critical review of energy management in commercial buildings and a comparative discussion to improve building energy efficiency using both active and passive solutions, which could lead to net-zero energy buildings. This work also explores different optimum energy management controller objectives and constraints concerning user comfort, energy policy, data privacy, and security. In addition, the review depicts prospective future trends and issues for developing an effective building energy management system, which may play an unavoidable part in fulfilling the United Nations Sustainable Development Goals.
Journal Article
Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids
by
Shabbir, Noman
,
Daniel, Kamran
,
Saleem, M.
in
Architecture and energy conservation
,
Automation
,
Cloud computing
2023
The increasing price of and demand for energy have prompted several organizations to develop intelligent strategies for energy tracking, control, and conservation. Demand side management is a critical strategy for averting substantial supply disruptions and improving energy efficiency. A vital part of demand side management is a smart energy management system that can aid in cutting expenditures while still satisfying energy needs; produce customers’ energy consumption patterns; and react to energy-saving algorithms and directives. The Internet of Things is an emerging technology that can be employed to effectively manage energy usage in industrial, commercial, and residential sectors in the smart environment. This paper presents a smart energy management system for smart environments that integrates the Energy Controller and IoT middleware module for efficient demand side management. Each device is connected to an energy controller, which is the inculcation of numerous sensors and actuators with an IoT object, collects the data of energy consumption from each smart device through various time-slots that are designed to optimize the energy consumption of air conditioning systems based on ambient temperature conditions and operational dynamics of buildings and then communicate it to a centralized middleware module (cloud server) for management, processing, and further analysis. Since air conditioning systems contribute more than 50% of the electricity consumption in Pakistan, for validation of the proposed system, the air conditioning units have been taken as a proof of concept. The presented approach offers several advantages over traditional controllers by leveraging real-time monitoring, advanced algorithms, and user-friendly interfaces. The evaluation process involves comparing electricity consumption before and after the installation of the SEMS. The proposed system is tested and implemented in four buildings. The results demonstrate significant energy savings ranging from 15% to 49% and highlight the significant benefits of the system. The smart energy management system offers real-time monitoring, better control over the air conditioning systems, cost savings, environmental benefits, and longer equipment life. The ultimate goal is to provide a practical solution for reducing energy consumption in buildings, which can contribute to sustainable and efficient use of energy resources and goes beyond simpler controllers to address the specific needs of energy management in buildings.
Journal Article
Energy management and operational control methods for grid battery energy storage systems
2021
Energy storage is one of the key means for improving the flexibility, economy and security of power system. It is also important in promoting new energy consumption and the energy Internet. Therefore, energy storage is expected to support distributed power and the micro-grid, promote open sharing and flexible trading of energy production and consumption, and realize multi-functional coordination. In recent years, with the rapid development of the battery energy storage industry, its technology has shown the characteristics and trends for large-scale integration and distributed applications with multi-objective collaboration. As a grid-level application, energy management systems (EMS) of a battery energy storage system (BESS) were deployed in real time at utility control centers as an important component of power grid management. Based on the analysis of the development status of a BESS, this paper introduced application scenarios, such as reduction of power output fluctuations, agreement to the output plan at the renewable energy generation side, power grid frequency adjustment, power flow optimization at the power transmission side, and a distributed and mobile energy storage system at the power distribution side. The studies and application status of a BESS in recent years were reviewed. The energy management, operation control methods, and application scenes of large-scale BESSs were also examined in the study.
Journal Article
Recent Trends and Issues of Energy Management Systems Using Machine Learning
by
Kim, Jinyoung
,
Kim, Soohyun
,
Lee, Seongwoo
in
Adaptability
,
Algorithms
,
Alternative energy sources
2024
Energy management systems (EMSs) are regarded as essential components within smart grids. In pursuit of efficiency, reliability, stability, and sustainability, an integrated EMS empowered by machine learning (ML) has been addressed as a promising solution. A comprehensive review of current literature and trends has been conducted with a focus on key areas, such as distributed energy resources, energy management information systems, energy storage systems, energy trading risk management systems, demand-side management systems, grid automation, and self-healing systems. The application of ML in EMS is discussed, highlighting enhancements in data analytics, improvements in system stability, facilitation of efficient energy distribution and optimization of energy flow. Moreover, architectural frameworks, operational constraints, and challenging issues in ML-based EMS are explored by focusing on its effectiveness, efficiency, and suitability. This paper is intended to provide valuable insights into the future of EMS.
Journal Article
A Comprehensive Review of the Current Status of Smart Grid Technologies for Renewable Energies Integration and Future Trends: The Role of Machine Learning and Energy Storage Systems
by
Kiasari, Mahmoud
,
Ghaffari, Mahdi
,
Aly, Hamed
in
Air quality management
,
Alternative energy sources
,
Analysis
2024
The integration of renewable energy sources (RES) into smart grids has been considered crucial for advancing towards a sustainable and resilient energy infrastructure. Their integration is vital for achieving energy sustainability among all clean energy sources, including wind, solar, and hydropower. This review paper provides a thoughtful analysis of the current status of the smart grid, focusing on integrating various RES, such as wind and solar, into the smart grid. This review highlights the significant role of RES in reducing greenhouse gas emissions and reducing traditional fossil fuel reliability, thereby contributing to environmental sustainability and empowering energy security. Moreover, key advancements in smart grid technologies, such as Advanced Metering Infrastructure (AMI), Distributed Control Systems (DCS), and Supervisory Control and Data Acquisition (SCADA) systems, are explored to clarify the related topics to the smart grid. The usage of various technologies enhances grid reliability, efficiency, and resilience are introduced. This paper also investigates the application of Machine Learning (ML) techniques in energy management optimization within smart grids with the usage of various optimization techniques. The findings emphasize the transformative impact of integrating RES and advanced smart grid technologies alongside the need for continued innovation and supportive policy frameworks to achieve a sustainable energy future.
Journal Article