Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
154,152
result(s) for
"Engineering Mathematics"
Sort by:
Bayesian methods for structural dynamics and civil engineering
by
Yuen, Ka-Veng
in
Bayesian statistical decision theory
,
Engineering
,
Engineering -- Statistical methods
2010
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable.
* Familiarizes readers with the latest developments in the field
* Includes identification problems for both dynamic and static systems
* Addresses challenging civil engineering problems such as modal/model updating
* Presents methods applicable to mechanical and aerospace engineering
* Gives engineers and engineering students a concrete sense of implementation
* Covers real-world case studies in civil engineering and beyond, such as:
* structural health monitoring
* seismic attenuation
* finite-element model updating
* hydraulic jump
* artificial neural network for damage detection
* air quality prediction
* Includes other insightful daily-life examples
* Companion website with MATLAB code downloads for independent practice
* Written by a leading expert in the use of Bayesian methods for civil engineering problems
This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text.
MATLAB code and lecture materials for instructors available at www.wiley.com/go/yuen
Introduction to Direction-of-Arrival Estimation
by
Chen, Zhizang
,
Gokeda, Gopal
,
Yu, Yiqiang
in
Electrical engineering
,
Electrical engineering -- Mathematics
,
Electronics in navigation
2010
Direction-of-Arrival (DOA) estimation concerns the estimation of direction finding signals in the form of electromagnetic or acoustic waves, impinging on a sensor or antenna array. DOA estimation is used for locating and tracking signal sources in both civilian and military applications. This authoritative volume provides an overview and performance analysis of the basic DOA algorithms, including comparisons between the various types. The book offers you a detailed understanding of the arrays pertinent to DOA finding, and presents a detailed illustration of the ESPRIT-based DOA algorithms complete with their performance assessments. From antennas and array receiving systems, to advanced topics on DOA estimation, this book serves as a one-stop resource for professionals and students. Nearly 100 illustrations and more than 281 equations support key topics throughout.
Technical math for dummies
Are you a vocational student or a trade professional? This is your one-stop, hands-on guide to mastering the math you'll encounter on the job or while working toward your degree or certification.
Entropy theory and its application in environmental and water engineering
by
Singh, V. P. (Vijay P.)
in
Entropy
,
Hydraulic engineering
,
Hydraulic engineering -- Mathematics
2013
Entropy Theory and its Application in Environmental and Water Engineering responds to the need for a book that deals with basic concepts of entropy theory from a hydrologic and water engineering perspective and then for a book that deals with applications of these concepts to a range of water engineering problems. The range of applications of entropy is constantly expanding and new areas finding a use for the theory are continually emerging. The applications of concepts and techniques vary across different subject areas and this book aims to relate them directly to practical problems of environmental and water engineering.
The book presents and explains the Principle of Maximum Entropy (POME) and the Principle of Minimum Cross Entropy (POMCE) and their applications to different types of probability distributions. Spatial and inverse spatial entropy are important for urban planning and are presented with clarity. Maximum entropy spectral analysis and minimum cross entropy spectral analysis are powerful techniques for addressing a variety of problems faced by environmental and water scientists and engineers and are described here with illustrative examples.
Giving a thorough introduction to the use of entropy to measure the unpredictability in environmental and water systems this book will add an essential statistical method to the toolkit of postgraduates, researchers and academic hydrologists, water resource managers, environmental scientists and engineers. It will also offer a valuable resource for professionals in the same areas, governmental organizations, private companies as well as students in earth sciences, civil and agricultural engineering, and agricultural and rangeland sciences.
This book:
* Provides a thorough introduction to entropy for beginners and more experienced users
* Uses numerous examples to illustrate the applications of the theoretical principles
* Allows the reader to apply entropy theory to the solution of practical problems
* Assumes minimal existing mathematical knowledge
* Discusses the theory and its various aspects in both univariate and bivariate cases
* Covers newly expanding areas including neural networks from an entropy perspective and future developments.
Freedom in mathematics
This book challenges the views put forward by Pierre Cartier, one of the anchors of the famous Bourbaki group, and Cédric Villani, one of the most brilliant mathematicians of his generation, who received the Fields Medal in 2010. Jean Dhombres, mathematician and science historian, and Gerhard Heinzmann, philosopher of science and also a specialist in mathematics engage in a fruitful dialogue with the two mathematicians, prompting readers to reflect on mathematical activity and its social consequences in history as well as in the modern world. Cédric Villani's popular success proves once again that a common awareness has developed, albeit in a very confused way, of the major role of mathematics in the construction and efficiency of natural sciences, which are at the origin of our technologies. Despite this, the idea that mathematics cannot be shared remains firmly entrenched, a perceived failing that has even been branded a lack of culture by vocal forces in the media as well as cultural and political establishment. The authors explore three major directions in their dialogue: the highly complex relationship between mathematics and reality, the subject of many debates and opposing viewpoints; the freedom that the construction of mathematics has given humankind by enabling them to develop the natural sciences as well as mathematical research; and the responsibility with which the scientific community and governments should address the role of mathematics in research and education policies.
Formulas for Dynamics, Acoustics and Vibration
by
Blevins Robert D
in
Civil Engineering & Construction Materials
,
Dynamics
,
Dynamics - Mathematics
2016,2015
With Over 60 tables, most with graphic illustration, and over 1000 formulas, this book will provide an invaluable time-saving source of concise solutions for mechanical, civil, nuclear, petrochemical and aerospace engineers and designers. Marine engineers and service engineers will also find it useful for diagnosing their machines that can slosh, rattle, whistle, vibrate, and crack under dynamic loads.
Frameworks, tensegrities, and symmetry
\"This introduction to the theory of rigid structures explains how to analyze the performance of built and natural structures under loads, paying special attention to the role of geometry. The book unifies the engineering and mathematical literatures by exploring different notions of rigidity -- local, global, and universal -- and how they are interrelated. Important results are stated formally, but also clarified with a wide range of revealing examples. An important generalization is to tensegrities, where fixed distances are replaced with \"cables\" not allowed to increase in length and \"struts\" not allowed to decrease in length. A special feature is the analysis of symmetric tensegrities, where the symmetry of the structure is used to simplify matters and allows the theory of group representations to be applied. Written for researchers and graduate students in structural engineering and mathematics, this work is also of interest to computer scientists and physicists\"-- Provided by publisher.
The finite element method in engineering
2005,2004,2011
The Finite Element Method in Engineering is the only book to provide a broad overview of the underlying principles of finite element analysis and where it fits into the larger context of other mathematically based engineering analytical tools. This is an updated and improved version of a finite element text long noted for its practical applications approach, its readability, and ease of use. Students will find in this textbook a thorough grounding of the mathematical principles underlying the popular, analytical methods for setting up a finite element solution based on mathematical equations. The book provides a host of real-world applications of finite element analysis, from structural design to problems in fluid mechanics and thermodynamics. It has added new sections on the assemblage of element equations, as well as an important new comparison between finite element analysis and other analytical methods showing advantages and disadvantages of each. This book will appeal to students in mechanical, structural, electrical, environmental and biomedical engineering.