Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,349 result(s) for "Enhancer of Zeste Homolog 2 Protein"
Sort by:
Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial
Activating mutations of EZH2, an epigenetic regulator, are present in approximately 20% of patients with follicular lymphoma. We investigated the activity and safety of tazemetostat, a first-in-class, oral EZH2 inhibitor, in patients with follicular lymphoma. This study was an open-label, single-arm, phase 2 trial done at 38 clinics or hospitals in France, the UK, Australia, Canada, Poland, Italy, Ukraine, Germany, and the USA. Eligible patients were adults (≥18 years) with histologically confirmed follicular lymphoma (grade 1, 2, 3a, or 3b) that had relapsed or was refractory to two or more systemic therapies, had an Eastern Cooperative Oncology Group performance status of 0–2, and had sufficient tumour tissue for central testing of EZH2 mutation status. Patients were categorised by EZH2 status: mutant (EZH2mut) or wild-type (EZH2WT). Patients received 800 mg of tazemetostat orally twice per day in continuous 28-day cycles. The primary endpoint was objective response rate based on the 2007 International Working Group criteria for non-Hodgkin lymphoma, assessed by an independent radiology committee. Activity and safety analyses were done in patients who received one dose or more of tazemetostat. This study is registered with ClinicalTrials.gov, NCT01897571, and follow-up is ongoing. Between July 9, 2015, and May 24, 2019, 99 patients (45 in the EZH2mut cohort and 54 in the EZH2WT cohort) were enrolled in the study. At data cutoff for the analysis (Aug 9, 2019), the median follow-up was 22·0 months (IQR 12·0–26·7) for the EZH2mut cohort and 35·9 months (24·9–40·5) for the EZH2WT cohort. The objective response rate was 69% (95% CI 53–82; 31 of 45 patients) in the EZH2mut cohort and 35% (23–49; 19 of 54 patients) in the EZH2WT cohort. Median duration of response was 10·9 months (95% CI 7·2–not estimable [NE]) in the EZH2mut cohort and 13·0 months (5·6–NE) in the EZH2WT cohort; median progression-free survival was 13·8 months (10·7–22·0) and 11·1 months (3·7–14·6). Among all 99 patients, treatment-related grade 3 or worse adverse events included thrombocytopenia (three [3%]), neutropenia (three [3%]), and anaemia (two [2%]). Serious treatment-related adverse events were reported in four (4%) of 99 patients. There were no treatment-related deaths. Tazemetostat monotherapy showed clinically meaningful, durable responses and was generally well tolerated in heavily pretreated patients with relapsed or refractory follicular lymphoma. Tazemetostat is a novel treatment for patients with follicular lymphoma. Epizyme.
EZH2: a novel target for cancer treatment
Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.
Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2
Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27me3) via its catalytic SET domain. A missense mutation in the substrate of PRC2, histone H3K27M, is associated with certain pediatric brain cancers and is linked to a global decrease of H3K27me3 in the affected cells thought to be mediated by inhibition of PRC2 activity. We present here the crystal structure of human PRC2 in complex with the inhibitory H3K27M peptide bound to the active site of the SET domain, with the methionine residue located in the pocket that normally accommodates the target lysine residue. The structure and binding studies suggest a mechanism for the oncogenic inhibition of H3K27M. The structure also reveals how binding of repressive marks, like H3K27me3, to the EED subunit of the complex leads to enhancement of the catalytic efficiency of the SET domain and thus the propagation of this repressive histone modification. Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27Me). Here, the authors report the structure of the human PRC2 complex bound to the oncogenic H3K27M mutant, and suggest a mechanism for its potency in childhood brain cancers.
Discovery of a first-in-class EZH2 selective degrader
The enhancer of zeste homolog 2 (EZH2) is the main enzymatic subunit of the PRC2 complex, which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to promote transcriptional silencing. EZH2 is overexpressed in multiple types of cancer including triple-negative breast cancer (TNBC), and high expression levels correlate with poor prognosis. Several EZH2 inhibitors, which inhibit the methyltransferase activity of EZH2, have shown promise in treating sarcoma and follicular lymphoma in clinics. However, EZH2 inhibitors are ineffective at blocking proliferation of TNBC cells, even though they effectively reduce the H3K27me3 mark. Using a hydrophobic tagging approach, we generated MS1943, a first-in-class EZH2 selective degrader that effectively reduces EZH2 levels in cells. Importantly, MS1943 has a profound cytotoxic effect in multiple TNBC cells, while sparing normal cells, and is efficacious in vivo, suggesting that pharmacologic degradation of EZH2 can be advantageous for treating the cancers that are dependent on EZH2. A hydrophobic tagging method is used to develop a selective degrader for the chromatin regulator EZH2, which inhibits proliferation of triple-negative breast cancer cell lines in vitro and in vivo.
Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma
The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2) methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1) has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma-a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein-display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers.
Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment
Targeting self-renewal is an important goal in cancer therapy and recent studies have focused on Notch signalling in the maintenance of stemness of glioma stem cells (GSCs). Understanding cancer-specific Notch regulation would improve specificity of targeting this pathway. In this study, we find that Notch1 activation in GSCs specifically induces expression of the lncRNA, TUG1 . TUG1 coordinately promotes self-renewal by sponging miR-145 in the cytoplasm and recruiting polycomb to repress differentiation genes by locus-specific methylation of histone H3K27 via YY1-binding activity in the nucleus. Furthermore, intravenous treatment with antisense oligonucleotides targeting TUG1 coupled with a drug delivery system induces GSC differentiation and efficiently represses GSC growth in vivo. Our results highlight the importance of the Notch-lncRNA axis in regulating self-renewal of glioma cells and provide a strong rationale for targeting TUG1 as a specific and potent therapeutic approach to eliminate the GSC population. Self-renewal of cancer stem cells can contribute to glioma progression. Here, the authors show that Notch1 activation in glioma stem cells induces expression of the lncRNA TUG1 , which promotes self-renewal through the repression of differentiation genes, and that targeting TUG1 represses glioma growth in vivo .
Engaging chromatin: PRC2 structure meets function
Polycomb repressive complex 2 (PRC2) is a key epigenetic multiprotein complex involved in the regulation of gene expression in metazoans. PRC2 is formed by a tetrameric core that endows the complex with histone methyltransferase activity, allowing it to mono-, di- and tri-methylate histone H3 on lysine 27 (H3K27me1/2/3); H3K27me3 is a hallmark of facultative heterochromatin. The core complex of PRC2 is bound by several associated factors that are responsible for modulating its targeting specificity and enzymatic activity. Depletion and/or mutation of the subunits of this complex can result in severe developmental defects, or even lethality. Furthermore, mutations of these proteins in somatic cells can be drivers of tumorigenesis, by altering the transcriptional regulation of key tumour suppressors or oncogenes. In this review, we present the latest results from structural studies that have characterised PRC2 composition and function. We compare this information with data and literature for both gain-of function and loss-of-function missense mutations in cancers to provide an overview of the impact of these mutations on PRC2 activity.
Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia
Proteasomal degradation of EZH2 in AML patients in response to therapy triggers the expression of stem cell markers and has been identified as an epigenetic pathway leading to acquired drug resistance. Treatments aimed to restore EZH2 expression in relapsed AML patients have shown clinical efficacy and constitute a viable approach to re-sensitize tumors to chemotherapy. In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction of histone H3K27 trimethylation as a novel pathway of acquired resistance to tyrosine kinase inhibitors (TKIs) and cytotoxic drugs in AML. Low EZH2 protein levels correlated with poor prognosis in AML patients. Suppression of EZH2 protein expression induced chemoresistance of AML cell lines and primary cells in vitro and in vivo . Low EZH2 levels resulted in derepression of HOX genes, and knockdown of HOXB7 and HOXA9 in the resistant cells was sufficient to improve sensitivity to TKIs and cytotoxic drugs. The endogenous loss of EZH2 expression in resistant cells and primary blasts from a subset of relapsed AML patients resulted from enhanced CDK1-dependent phosphorylation of EZH2 at Thr487. This interaction was stabilized by heat shock protein 90 (HSP90) and followed by proteasomal degradation of EZH2 in drug-resistant cells. Accordingly, inhibitors of HSP90, CDK1 and the proteasome prevented EZH2 degradation, decreased HOX gene expression and restored drug sensitivity. Finally, patients with reduced EZH2 levels at progression to standard therapy responded to the combination of bortezomib and cytarabine, concomitant with the re-establishment of EZH2 expression and blast clearance. These data suggest restoration of EZH2 protein as a viable approach to overcome treatment resistance in this AML patient population.
O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2
Protein O-glycosylation by attachment of β-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-basedmethod of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.
Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells
Natural killer (NK) cell-mediated tumor cell eradication could inhibit tumor initiation and progression. However, the factors that regulate NK cell-mediated cancer cell eradication remain unclear. We determined that hepatocellular carcinoma (HCC) cells exhibit transcriptional down-regulation of NK group 2D (NKG2D) ligands and are largely resistant to NK cell-mediated eradication. Because the downregulation of NKG2D ligands occurred at the transcriptional level, we tested 32 chemical inhibitors of epigenetic regulators for their ability to re-express NKG2D ligands and enhance HCC cell eradication by NK cells and found that Enhancer of zeste homolog 2 (EZH2) was a transcriptional repressor of NKG2D ligands. The inhibition of EZH2 by small-molecule inhibitors or genetic means enhanced HCC cell eradication by NK cells in a NKG2D ligand-dependent manner. Collectively, these results demonstrate that EZH2 inhibition enhances HCC eradication by NK cells and that EZH2 functions, in part, as an oncogene by inhibiting immune response.