Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
97
result(s) for
"Enterobacter hormaechei"
Sort by:
Antibacterial Mechanism of Vanillic Acid on Physiological, Morphological, and Biofilm Properties of Carbapenem-Resistant Enterobacter hormaechei
2020
Many studies have evaluated the antimicrobial activity of natural products against various microorganisms, but to our knowledge there have been no studies of the possible use of natural products for their antimicrobial activity against Enterobacter hormaechei. In this study, we investigated vanillic acid (VA) for its antimicrobial activities and its modes of action against carbapenem-resistant E. hormaechei (CREH). The MIC of VA against CREH was determined by the agar diffusion method. The antibacterial action of VA against CREH was elucidated by measuring variations in intracellular ATP concentration, intracellular pH, membrane potential, and cell morphology. Moreover, the efficacy of VA against biofilm formation and VA damage to CREH cells embedded in biofilms were further explored. Our results show that VA was effective against CREH with a MIC of 0.8 mg/mL. VA could rupture the cell membrane integrity of CREH, as measured by a decrease of intracellular ATP, pH, and membrane potential, along with distinctive alternations in cell morphology. In addition, VA exerted a remarkable inhibitory effect on the biofilm formation of CREH and also killed CREH cells within biofilms. These findings show that VA has a potent antibacterial and antibiofilm activity against CREH and, hence, has the potential to be used clinically as a novel candidate agent to treat CREH infections and in the food industry as a food preservative and surface disinfectant.
Journal Article
Isolation, identification and transcriptome analysis of triadimefon-degrading strain Enterobacter hormaechei TY18
2024
Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon–nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.
Journal Article
Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 14: suitability of taxonomic units notified to EFSA until March 2021
by
Hilbert, Friederike
,
Barizzone, Fulvio
,
Koutsoumanis, Kostas
in
Anoxybacillus caldiproteolyticus
,
Antimicrobial resistance
,
Bacillus paralicheniformis
2021
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre‐evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by ‘qualifications’. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Schizochytrium limacinum, which is a synonym for Aurantiochytrium limacinum, was added to the QPS list. Of the 78 microorganisms notified to EFSA between October 2020 and March 2021, 71 were excluded; 16 filamentous fungi, 1 Dyella spp., 1 Enterococcus faecium, 7 Escherichia coli, 1 Streptomyces spp., 1 Schizochytrium spp. and 44 TUs that had been previously evaluated. Seven TUs were evaluated: Corynebacterium stationis and Kodamaea ohmeri were re‐assessed because an update was requested for the current mandate. Anoxybacillus caldiproteolyticus, Bacillus paralicheniformis, Enterobacter hormaechei, Eremothecium ashbyi and Lactococcus garvieae were assessed for the first time. The following TUs were not recommended for QPS status: A. caldiproteolyticus due to the lack of a body of knowledge in relation to its use in the food or feed chain, E. hormaechei, L. garvieae and K. ohmeri due to their pathogenic potential, E. ashbyi and C. stationis due to a lack of body of knowledge on their occurrence in the food and feed chain and to their pathogenic potential. B. paralicheniformis was recommended for the QPS status with the qualification ‘absence of toxigenic activity’ and ‘absence of genetic information to synthesize bacitracin’.
Journal Article
Presence and Role of the Type 3 Fimbria in the Adherence Capacity of Enterobacter hormaechei subsp. hoffmannii
by
Schneider, Isidora
,
Fernández-Yáñez, Valentina
,
Del Canto, Felipe
in
Antibiotics
,
Antimicrobial agents
,
bacterial adherence
2024
Enterobacter hormaechei, one of the species within the Enterobacter cloacae complex, is a relevant agent of healthcare-associated infections. In addition, it has gained relevance because isolates have shown the capacity to resist several antibiotics, particularly carbapenems. However, knowledge regarding colonization and virulence mechanisms of E. hormaechei has not progressed to the same extent as other Enterobacteriaceae species as Escherichia coli or Klebsiella pneumoniae. Here, we describe the presence and role of the type 3 fimbria, a chaperone-usher assembled fimbria, which was first described in Klebsiella spp., and which has been detected in other representatives of the Enterobacteriaceae family. Eight Chilean E. cloacae isolates were examined, and among them, four E. hormaechei isolates were found to produce the type 3 fimbria. These isolates were identified as E. hormaechei subsp. hoffmannii, one of the five subspecies known. A mutant E. hormaechei subsp. hoffmannii strain lacking the mrkA gene, encoding the major structural subunit, displayed a significantly reduced adherence capacity to a plastic surface and to Caco-2 cells, compared to the wild-type strain. This phenotype of reduced adherence capacity was not observed in the mutant strains complemented with the mrkA gene under the control of an inducible promoter. Therefore, these data suggest a role of the type 3 fimbria in the adherence capacity of E. hormaechei subsp. hoffmannii. A screening in E. hormaechei genomes contained in the NCBI RefSeq Assembly database indicated that the overall presence of the type 3 fimbria is uncommon (5.94–7.37%), although genes encoding the structure were detected in representatives of the five E. hormaechei subspecies. Exploration of complete genomes indicates that, in most of the cases, the mrkABCDF locus, encoding the type 3 fimbria, is located in plasmids. Furthermore, sequence types currently found in healthcare-associated infections were found to harbor genes encoding the type 3 fimbria, mainly ST145, ST78, ST118, ST168, ST66, ST93, and ST171. Thus, although the type 3 fimbria is not widespread among the species, it might be a determinant of fitness for a subset of E. hormaechei representatives.
Journal Article
Enterobacter cloacae Complex: Clinical Impact and Emerging Antibiotic Resistance
by
Stefani, Stefania
,
Gona, Floriana
,
Mezzatesta, Maria Lina
in
ampC gene
,
Antibiotic resistance
,
Antibiotics
2012
Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.
Journal Article
Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy)
by
Cattabiani, Nicola
,
Baratto, Camilla
,
Ponzoni, Andrea
in
electronic-nose
,
Enterobacter hormaechei
,
gas-sensors
2017
This work reports the recent results achieved at the SENSOR Lab, Brescia (Italy) to address the selectivity of metal oxide based gas sensors. In particular, two main strategies are being developed for this purpose: (i) investigating different sensing mechanisms featuring different response spectra that may be potentially integrated in a single device; (ii) exploiting the electronic nose (EN) approach. The former has been addressed only recently and activities are mainly focused on determining the most suitable configuration and measurements to exploit the novel mechanism. Devices suitable to exploit optical (photoluminescence), magnetic (magneto-optical Kerr effect) and surface ionization in addition to the traditional chemiresistor device are here discussed together with the sensing performance measured so far. The electronic nose is a much more consolidated technology, and results are shown concerning its suitability to respond to industrial and societal needs in the fields of food quality control and detection of microbial activity in human sweat.
Journal Article
Colonisation of hospital surfaces from low- and middle-income countries by extended spectrum β-lactamase- and carbapenemase-producing bacteria
2024
Hospital surfaces can harbour bacterial pathogens, which may disseminate and cause nosocomial infections, contributing towards mortality in low- and middle-income countries (LMICs). During the BARNARDS study, hospital surfaces from neonatal wards were sampled to assess the degree of environmental surface and patient care equipment colonisation by Gram-negative bacteria (GNB) carrying antibiotic resistance genes (ARGs). Here, we perform PCR screening for extended-spectrum β-lactamases (
bla
CTX-M-15
) and carbapenemases (
bla
NDM
,
bla
OXA-48
-like and
bla
KPC
), MALDI-TOF MS identification of GNB carrying ARGs, and further analysis by whole genome sequencing of bacterial isolates. We determine presence of consistently dominant clones and their relatedness to strains causing neonatal sepsis. Higher prevalence of carbapenemases is observed in Pakistan, Bangladesh, and Ethiopia, compared to other countries, and are mostly found in surfaces near the sink drain.
Klebsiella pneumoniae
,
Enterobacter hormaechei
,
Acinetobacter baumannii
,
Serratia marcescens
and
Leclercia adecarboxylata
are dominant; ST15
K. pneumoniae
is identified from the same ward on multiple occasions suggesting clonal persistence within the same environment, and is found to be identical to isolates causing neonatal sepsis in Pakistan over similar time periods. Our data suggests persistence of dominant clones across multiple time points, highlighting the need for assessment of Infection Prevention and Control guidelines.
In hospitals, surfaces present as a reservoir for bacteria pathogens, potentially leading to nosocomial infections. In this work, authors aim to profile extended-spectrum β lactamase- and carbapenemase-carrying bacterial species colonising neonatal hospital wards and causing neonatal sepsis.
Journal Article
Pan-genome analysis of the Enterobacter hormaechei complex highlights its genomic flexibility and pertinence as a multidrug resistant pathogen
by
Coutinho, Teresa A.
,
De Maayer, Pieter
,
Green, Teigra
in
Analysis
,
Animal Genetics and Genomics
,
Anopheles
2025
BACKGROUND : Enterobacter hormaechei is of increasing concern as both an opportunistic and nosocomial pathogen, exacerbated by its evolving multidrug resistance. However, its taxonomy remains contentious, and little is known about its pathogenesis and the broader context of its resistome. In this study, a comprehensive comparative genomic analysis was undertaken to address these issues. RESULTS : Phylogenomic analysis revealed that E. hormaechei represents a complex, comprising three predicted species, E. hormaechei, E. hoffmannii and E. xiangfangensis, with the latter putatively comprising three distinct subspecies, namely oharae, steigerwaltii and xiangfangensis. The species and subspecies all display open and distinct pan-genomes, with diversification driven by an array of mobile genetic elements including numerous plasmid replicons and prophages, integrative conjugative elements (ICE) and transposable elements. These elements have given rise to a broad, relatively conserved set of pathogenicity determinants, but also a variable set of secretion systems. The E. hormaechei complex displays a highly mutable resistome, with most taxa being multidrug resistant. CONCLUSIONS : This study addressed key issues pertaining to the taxonomy of the E. hormaechei complex, which may contribute towards more accurate identification of strains belonging to this species complex in the clinical setting. The pathogenicity determinants identified in this study could serve as a basis for a deeper understanding of E. hormaechei complex pathogenesis and virulence. The extensive nature of multidrug resistance among E. hormaechei complex strains highlights the need for responsible antibiotic stewardship to ensure effective treatment of these emerging pathogens.
Journal Article
Development of a One-Step Multiplex PCR Assay for Differential Detection of Four species (Enterobacter cloacae, Enterobacter hormaechei, Enterobacter roggenkampii, and Enterobacter kobei) Belonging to Enterobacter cloacae Complex With Clinical Significance
by
Chen, Rongchang
,
Ji, Yang
,
Zhou, Kai
in
Cellular and Infection Microbiology
,
Clinical significance
,
Drug resistance
2021
Enterobacter cloacae complex (ECC) is composed of multiple species and the taxonomic status is consecutively updated. In last decades ECC is frequently associated with multidrug resistance and become an important nosocomial pathogen. Currently, rapid and accurate identification of ECC to the species level remains a technical challenge, thus impedes our understanding of the population at the species level. Here, we aimed to develop a simple, reliable, and economical method to distinguish four epidemiologically prevalent species of ECC with clinical significance, i.e., E. cloacae , E. hormaechei , E. roggenkampii , and E. kobei . A total of 977 ECC genomes were retrieved from the GenBank, and unique gene for each species was obtained by core-genome comparisons. Four pairs of species-specific primers were designed based on the unique genes. A total of 231 ECC clinical strains were typed both by hsp60 typing and by species-specific PCRs. The specificity and sensitivity of the four species-specific PCRs ranged between 96.56% and 100% and between 76.47% and 100%, respectively. The PCR for E. cloacae showed the highest specificity and sensitivity. A one-step multiplex PCR was subsequently established by combining the species-specific primers. Additional 53 hsp60 -typed ECC and 20 non-ECC isolates belonging to six species obtained from samples of patients, sewage water and feces of feeding animals were tested by the multiplex PCR. The identification results of both techniques were concordant. The multiplex PCR established in this study provides an accurate, expeditious, and cost-effective way for routine diagnosis and molecular surveillance of ECC strains at species level.
Journal Article
Antitumor and cytotoxic activities of endophytic Enterobacter hormaechei derived secondary metabolites: In-vitro and In-silico study
2025
Anticancer therapies resistance, as well as their existing side effects, has become a significant issue worldwide. The demands of new anticancer agents that prevent cancer from developing and growing or spreading are increasing day by day. In this regard, our investigation assessed the cytotoxic and anticancer properties of secondary metabolites (SMs) obtained from understudied endophytic bacteria inhibiting Alliaria petiolata . The identified SMs were further screened by computational analysis against angiogenic factors of cancer. As a result, the leaf sample-associated isolate was identified as Enterobacter hormaechei AP2 strain. Gas chromatography-mass spectroscopy (GC-MS) analysis has shown the existence of 27 compounds present in the crude extract with main compounds being; 4,4-Ethylenedioxy-1-pentylamine (22.54%), Triethanolamine (15.17%) and 2-isobutoxyethyl acetate (12.51%). The extract showed anticancer activity with IC 50 = 145 µM against the human glioblastoma cell line and cytotoxic activity with LC 50 = 214.1 μg/mL against Artemia salina nauplii. The metabolite; 3-(2-Methylpropyl)hexahydropyrrolo[1,2-a]pyrazine-1,4-dione was predictively found most effective by computational analysis against angiogenic factors of cancer. It also demonstrated high intestinal solubility as well as low toxicity. In conclusion, the presence of E. hormaechei within A. petiolata may provide a wealth of bioactive chemicals. Validating the current discovery, purification, its biosynthesis route and other biological functions were recommended for additional research.
Journal Article