Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
239
result(s) for
"Enterovirus B, Human - physiology"
Sort by:
Coxsackievirus and adenovirus receptor expression facilitates enteroviral infections to drive the development of pancreatic cancer
2024
The development of pancreatic cancer requires both, acquisition of an oncogenic mutation in
KRAS
as well as an inflammatory insult. However, the physiological causes for pancreatic inflammation are less defined. We show here that oncogenic KRas-expressing pre-neoplastic lesion cells upregulate coxsackievirus (CVB) and adenovirus receptor (CAR). This facilitates infections from enteroviruses such as CVB3, which can be detected in approximately 50% of pancreatic cancer patients. Moreover, using an animal model we show that a one-time pancreatic infection with CVB3 in control mice is transient, but in the presence of oncogenic KRas drives chronic inflammation and rapid development of pancreatic cancer. We further demonstrate that a knockout of CAR in pancreatic lesion cells blocks these CVB3-induced effects. Our data demonstrate that KRas-caused lesions promote the development of pancreatic cancer by enabling certain viral infections.
Chronic pancreatitis is a risk factor for the development of pancreatic cancer. Here authors report that coxsackievirus and adenovirus receptor (CAR) expression promotes pancreatitis and pancreatic cancer upon enterovirus infections.
Journal Article
Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers
by
Segall, Anca M.
,
Tsueng, Ginger
,
Mangale, Vrushali
in
Animals
,
Biology and Life Sciences
,
Cell-Derived Microparticles - genetics
2014
Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, \"fluorescent timer\" protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. \"Fluorescent timer\" protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of \"fluorescent timer\" protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. \"Fluorescent timer\" protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured \"fluorescent timer\" protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol gradient fractions consistent with membrane association. The preferential detection of the lipidated form of LC3 protein (LC3 II) in released EMVs harboring infectious virus suggests that the autophagy pathway plays a crucial role in microvesicle shedding and virus release, similar to a process previously described as autophagosome-mediated exit without lysis (AWOL) observed during poliovirus replication. Through the use of this novel recombinant virus which provides more dynamic information from static fluorescent images, we hope to gain a better understanding of CVB3 tropism, intracellular membrane reorganization, and virus-associated microvesicle dissemination within the host.
Journal Article
The multifaceted role of the viral 2A protease in enterovirus replication and antagonism of host antiviral responses
2025
Enteroviruses dramatically remodel the cellular infrastructure for efficient replication and curtailing host antiviral responses. The roles of viral proteins in these processes have been studied mostly in vitro , by ectopic overexpression, or by surrogate infection systems, all of which have shortcomings. Here, we replace the essential 2A cleavage site at the P1-P2 junction with an internal ribosome entry site (IRES), 3CD cleavage site, or T2A sequence, allowing us to catalytically inactivate 2A pro in the virus context. Viruses with an inactive 2A pro are hampered in replication in cell lines and are severely attenuated in a Coxsackievirus B3 (CVB3) mouse pancreatitis infection model. We show that 2A pro is essential for disturbing nucleocytoplasmic transport, shutting down host mRNA translation, suppressing stress granule formation, suppressing the induction of the IFN response, and overcoming IFN-induced restriction factors. Moreover, using an advanced single-molecule live cell imaging approach, we reveal that 2A pro is important for the initial round of replication of the incoming viral RNA, which is a bottleneck for efficient infection. Thus, 2A pro plays a critical role in subverting antiviral responses and establishing a favorable environment to expedite enterovirus replication.
Journal Article
Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro
by
Hamkins-Indik, Tiama
,
Wales, Samantha Q.
,
Bahinski, Anthony
in
Apoptosis
,
Biology and Life Sciences
,
Caco-2 Cells
2017
Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower 'vascular' channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis.
Journal Article
Coxsackievirus B3 replication and pathogenesis
2015
Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Journal Article
A Fluorescent Reporter Virus Toolkit for Interrogating Enterovirus Biology and Host Interactions
by
Velandia-Álvarez, Sebastian
,
Geller, Ron
,
Martínez-Pérez, Mireya
in
Analysis
,
Animals
,
Antibodies
2025
Enteroviruses are a group of highly prevalent human pathogens responsible for a wide range of illnesses, ranging from common cold symptoms to life-threatening diseases. A deep understanding of enterovirus biology, evolution, and host interaction is required for the development of effective vaccines and antivirals. Recombinant reporter viruses encoding luminescent or fluorescent proteins have been developed to facilitate such investigation. In this work, using coxsackievirus B3 as our model, we analyze how the insertion of fluorescent reporter genes at three distinct sites within the viral polyprotein affects viral fitness, identifying the most tolerant site for reporter insertion. We then describe a set of experimental workflows for measuring viral fitness, sera neutralization, antiviral efficacy, and recombination using fluorescent reporter viruses. The high homology between different enteroviruses suggests these assays can be readily adapted to study additional members of this medically and economically relevant group of viruses.
Journal Article
Tradeoffs for a viral mutant with enhanced replication speed
by
Maples, Robert W.
,
Pfeiffer, Julie K.
,
Lanahan, Matthew R.
in
Animals
,
Biological Sciences
,
Capsid protein
2021
RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach—selecting for the earliest viral progeny—could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.
Journal Article
Establishment and application of a wild neonatal mouse model infected with an Echovirus 30 isolate
2025
Background
Echovirus 30 (E30) is a significant pathogen associated with various illnesses such as viral meningitis, viral myocarditis. Currently, there are no specific drugs or vaccines targeting this virus. An appropriate animal model is imperative for assessing drug and vaccine efficacy.
Methods
This investigation aimed to establish a neonatal mouse model using a clinical isolate E30/A538 and apply it to screen anti-E30 drugs. The study involved evaluating the susceptibility of different mouse strains to the isolate, determining the infectious dose, transmission route, and optimal age of the mice. This model was then used to assess antiviral efficacy.
Results
Neonatal ICR mice infected intracranially with 5LD
50
of E30/A538 at one-day-old displayed clinical symptoms such as tremors, lethargy, limb paralysis, and mortality. Importantly, the E30/A538-infected mice exhibited brain neuron apoptosis and severe myocardial necrolysis, closely resembling human infections. Elevated levels of viral RNA and positive antigen presence were predominantly detected in the brains and hearts of infected mice. Using this model to assess antiviral efficacy, it was demonstrated that interferon-α2a inhibited E30/A538 replication in vivo, mitigated histopathological changes in the brain, spinal cord, and myocardium, and enhanced the survival rate of neonatal mice.
Conclusions
In summary, this research established a wild neonatal mouse model of E30/A538 isolate infection that mirrors the characteristics of human infection. The model demonstrated the efficacy of interferon-α2a in combating E30. This model would serve as a foundation for investigating the pathogenesis of E30, as well as for assessing the efficacy of vaccines and other antiviral treatments against E30.
Journal Article
Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication
by
Hilde M van der Schaar Lonneke van der Linden Kjerstin H W Lanke Jeroen R P M Strating Gerhard Purstinger Erik de Vries Cornelis A M de Haan Johan Neyts Frank J M van Kuppeveld
in
1-Phosphatidylinositol 4-Kinase - antagonists & inhibitors
,
1-Phosphatidylinositol 4-Kinase - metabolism
,
631/208/325/2483
2012
RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings in- dicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.
Journal Article
Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis
We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin–protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection.
Journal Article