Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
68,453
result(s) for
"Environmental Biotechnology"
Sort by:
Microbial Biodegradation and Bioremediation
2014
Microbial Biodegradation and Bioremediation brings together experts in relevant fields to describe the successful application of microbes and their derivatives for bioremediation of potentially toxic and relatively novel compounds.
Prospective CO2 and CO bioconversion into ectoines using novel microbial platforms
by
Cantera, Sara
,
Ettema, Thijs J. G
,
Strong, Peter James
in
Anthropogenic factors
,
Bioconversion
,
Biotechnology
2022
Microbial conversion of CO2 and CO into chemicals is a promising route that can contribute to the cost-effective reduction of anthropogenic green house and waste gas emissions and create a more circular economy. However, the biotechnological valorization of CO2 and CO into chemicals is still restricted by the limited number of model microorganisms implemented, and the small profit margin of the products synthesized. This perspective paper intends to explore the genetic potential for the microbial conversion of CO2 and CO into ectoines, in a tentative to broaden bioconversion platforms and the portfolio of products from C1 gas fermentations. Ectoine and hydroxyectoine can be produced by microorganisms growing at high salinity. They are high-value commodities for the pharmaceutical and medical sectors (1000–1200 €/kg). Currently microbial ectoine production is based on sugar fermentations, but expansion to other more sustainable and cheaper substrates is desirable. In this work, a literature review to identify halophilic microbes able to use CO2 and CO as a carbon source was performed. Subsequently, genomes of this poll of microbes were mined for genes that encode for ectoine and hydroxyectoine synthesis (ectABCD, ask, asd and ask_ect). As a result, we identified a total of 31 species with the genetic potential to synthesize ectoine and 14 to synthesize hydroxyectoine. These microbes represent the basis for the creation of novel microbial-platforms that can promote the development of cost-effective and sustainable valorization chains of CO2 and CO in different industrial scenarios.
Journal Article
Ethics of life : contemporary Iberian debates
\"Essays in this volume focus on notions of the ethics of life that emerge out of environmental, biopolitical, bioethical, and historical debates currently taking place on the Iberian Peninsula\"--Provided by publisher.
Bacillus subtilis surface display technology: applications in bioprocessing and sustainable manufacturing
2025
The growing demand for sustainable and eco-friendly alternatives in bioprocessing, healthcare, and manufacturing has stimulated significant interest in
Bacillus subtilis
surface display technology. This innovative platform, leveraging both spore and vegetative cell forms, provides exceptional versatility for a wide spectrum of applications, spanning from green technologies to advanced biomedical innovations. The robustness of spores and the metabolic activity of vegetative cells enable efficient enzyme immobilization, biocatalysis, and biosensor development, facilitating bioremediation, pollutant degradation, and renewable energy generation. Additionally,
B. subtilis
surface display systems have demonstrated remarkable potential in vaccine development and drug delivery, offering a cost-effective, scalable, and environmentally sustainable alternative to traditional methods. These systems can effectively present antigens or therapeutic molecules, enabling targeted drug delivery and robust immune responses. This review explores recent advancements, challenges, and opportunities in harnessing
B. subtilis
surface display technology for sustainable biomanufacturing, green innovations, and transformative biomedical applications, emphasizing its role in addressing pressing global challenges in environmental sustainability and healthcare.
Journal Article
Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116
2019
The use of green sources for materials synthesis has gained popularity in recent years. This work investigated the immobilization of lipase NS-40116 (Thermomyces lanuginosus lipase) in polyurethane foam (PUF) using a biopolyol obtained through the enzymatic glycerolysis between castor oil and glycerol, catalyzed by the commercial lipase Novozym 435 for the PUF formation. The reaction was performed to obtain biopolyol resulting in the conversion of 64% in mono- and diacylglycerol, promoting the efficient use of the reaction product as biopolyol to obtain polyurethane foam. The enzymatic derivative with immobilized lipase NS-40116 presented apparent density of 0.19 ± 0.03 g/cm3 and an immobilization yield was 94 ± 4%. Free and immobilized lipase NS-40116 were characterized in different solvents (methanol, ethanol, and propanol), temperatures (20, 40, 60 and 80 °C), pH (3, 5, 7, 9 and 11) and presence of ions Na+, Mg++, and Ca++. The support provided higher stability to the enzyme, mainly when subjected to acid pH (free lipase lost 80% of relative activity after 360 h of contact, when the enzymatic derivative lost around 22%) and high-temperature free lipase lost 50% of relative activity, while the immobilized remained 95%. The enzymatic derivative was also used for esterification reactions and conversions around 66% in fatty acid methyl esters, using abdominal chicken fat as feedstock, were obtained in the first use, maintaining this high conversion until the fourth reuse, proving that the support obtained using environmentally friendly techniques is applicable.
Journal Article
Microenvironment of Landfill-Mined Soil-Like Fractions (LMSF): Evaluating the Polymer Composting Potential Using Metagenomics and Geoenvironmental Characterization
2024
The search for potent plastic-degrading bacteria has been a focal point of research over the recent decades to develop sustainable methods for plastic waste management. Despite promising results at the laboratory scale, replicating the same at the field scale has been limited. Natural extremophilic conditions of the landfill host many plastic-degrading bacteria, and recently, culture-independent Next-Generation Sequencing metagenomics approaches are being adopted to screen them and exploit their utilities. However, one of the main challenges is the difficulty in designing the optimum artificial test conditions for understanding the growth and metabolic activities of the concerned microorganisms. In the current study using precision metagenomics, genes coding for PET and PHA degrading enzymes were screened from a landfill-mined soil-like fraction (LMSF) sample, with landfill soil under a freshly deposited waste dump acting as the control. Subsequently, thorough geoenvironmental characterization of the samples was performed to generate an understanding of the growth conditions of the microorganisms. Genes encoding for MHETase outpopulated the genes encoding for PETase in LMSF, while the reverse trend was observed in the control. The abundance and taxonomic distribution of the hosts containing genes of PETase and MHETase enzymes in the samples, when co-related with the FTIR spectra of the samples, indicated that the PET residues might have possibly degraded to MHET under natural conditions. Usually, commercial composts, which are already a market-ready product for the agriculture sector, are used for polymer composting, which is not sustainable in the long run. The structural and functional patterns of the microbes obtained in the metagenomics study and permissible levels of leachable heavy metals generate promise for the landfill-mined soil-like fractions to be potentially used for polymer degradation. Alongside this, the presence of a monotypic oceanic genus Plesiocystis in the landfill environment was confirmed, which is of utmost importance to the field of microbial ecology.
Graphical Abstract
Highlights
Variation of microbial diversity in landfill associated geoenvironments with differential exposure to extremophilic conditions.
Distribution of genes encoding PET and PHA degrading enzymes and the taxonomy their corresponding hosts.
Characterization of geoenvironment in which the plastic degrading microorganisms thrive.
Presence of monotypic oceanic genus Plesiocystis in landfill environment.
Journal Article