Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
21,770
result(s) for
"Environmental Exposure adverse effects."
Sort by:
Ischemic and Thrombotic Effects of Dilute Diesel-Exhaust Inhalation in Men with Coronary Heart Disease
by
Robinson, Simon D
,
Gonzalez, Manuel C
,
Mills, Nicholas L
in
Air pollution
,
Air Pollution - adverse effects
,
Angina pectoris
2007
After exposure to dilute diesel exhaust, men with coronary disease had increased exercise-induced myocardial ischemia, along with depressed fibrinolytic function. The data reported suggest possible mechanisms for the detrimental effect of air pollution from traffic in patients with coronary disease.
After exposure to dilute diesel exhaust, men with coronary disease had increased exercise-induced myocardial ischemia, along with depressed fibrinolytic function.
The World Health Organization (WHO) estimates that air pollution is responsible for 800,000 premature deaths worldwide each year.
1
Short-term exposure to air pollution has been associated with increases in cardiovascular morbidity and mortality, with deaths due to ischemia, arrhythmia, and heart failure.
2
In a large cohort study from the United States, Miller et al. recently reported that long-term exposure to air pollution increases the risk of death from cardiovascular disease by 76%.
3
These associations are strongest for fine particulate air pollutants (particulate matter of less than 2.5 μm in aerodynamic diameter [PM
2.5
]), of which the combustion-derived nanoparticulate in . . .
Journal Article
Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China
by
Li, Xiaochen
,
Liu, Suixin
,
Zhao, Dongxing
in
Adult
,
Air Pollutants - adverse effects
,
Air Pollutants - analysis
2017
ObjectiveThe association between exposure to ambient particles with a median aerodynamic diameter less than 10/2.5 µm (particulate matter, PM10/2.5) and COPD remains unclear. Our study objective was to examine the association between ambient PM10/2.5 concentrations and lung functions in adults.MethodsA cross-sectional study was conducted in southern China. Seven clusters were randomly selected from four cities across Guangdong province. Residents aged ≥20 years in the participating clusters were randomly recruited; all eligible participants were examined with a standardised questionnaire and spirometry. COPD was defined as a post-bronchodilator FEV1/FVC less than 70%. Atmosphere PM sampling was conducted across the clusters along with our survey.ResultsOf the subjects initially recruited, 84.4% (n=5993) were included for analysis. COPD prevalence and atmosphere PM concentration varied significantly among the seven clusters. COPD prevalence was significantly associated with elevated PM concentration levels: adjusted OR 2.416 (95% CI 1.417 to 4.118) for >35 and ≤75 µg/m3 and 2.530 (1.280 to 5.001) for >75 µg/m3 compared with the level of ≤35 µg/m3 for PM2.5; adjusted OR 2.442 (95% CI 1.449 to 4.117) for >50 and ≤150 µg/m3 compared with the level of ≤50 µg/m3 for PM1. A 10 µg/m3 increase in PM2.5 concentrations was associated with a 26 mL (95% CI −43 to −9) decrease in FEV1, a 28 mL (−49 to −8) decrease in FVC and a 0.09% decrease (−0.170 to −0.010) in FEV1/FVC ratio. The associations of COPD with PM10 were consistent with PM2.5 but slightly weaker.ConclusionsExposure to higher PM concentrations was strongly associated with increased COPD prevalence and declined respiratory function.Trial registration number ChiCTR-OO-14004264; Post-results.
Journal Article
Persistent Endothelial Dysfunction in Humans after Diesel Exhaust Inhalation
by
MacNee, William
,
Tornqvist, Hakan
,
Robinson, Simon D
in
Acetylcholine - administration & dosage
,
Acetylcholine - blood
,
Acetylcholine/administration & dosage/blood
2007
Exposure to combustion-derived air pollution is associated with an early (1-2 h) and sustained (24 h) rise in cardiovascular morbidity and mortality. We have previously demonstrated that inhalation of diesel exhaust causes an immediate (within 2 h) impairment of vascular and endothelial function in humans.
To investigate the vascular and systemic effects of diesel exhaust in humans 24 hours after inhalation.
Fifteen healthy men were exposed to diesel exhaust (particulate concentration, 300 microg/m(3)) or filtered air for 1 hour in a double-blind, randomized, crossover study. Twenty-four hours after exposure, bilateral forearm blood flow, and inflammatory and fibrinolytic markers were measured before and during unilateral intrabrachial bradykinin (100-1,000 pmol/min), acetylcholine (5-20 microg/min), sodium nitroprusside (2-8 microg/min), and verapamil (10-100 microg/min) infusions.
Resting forearm blood flow, blood pressure, and basal fibrinolytic markers were similar 24 hours after either exposure. Diesel exhaust increased plasma cytokine concentrations (tumor necrosis factor-alpha and interleukin-6, p < 0.05 for both) but appeared to reduce acetylcholine (p = 0.01), and bradykinin (p = 0.08) induced forearm vasodilatation. In contrast, there were no differences in either endothelium-independent (sodium nitroprusside and verapamil) vasodilatation or bradykinin-induced acute plasma tissue plasminogen activator release.
Twenty-four hours after diesel exposure, there is a selective and persistent impairment of endothelium-dependent vasodilatation that occurs in the presence of mild systemic inflammation. These findings suggest that combustion-derived air pollution may have important systemic and adverse vascular effects for at least 24 hours after exposure.
Journal Article
Human health and physical activity during heat exposure
This book provides fundamental concepts in human thermal physiology and their applications in general public, occupational, military, and athletics settings from the biometeorological perspective. The book includes a section on human physiology, epidemiology and special considerations in aforementioned populations, and behavioral and technological adjustments people may take to combat thermal environmental stress and safeguard their health. The book is the first of its kind to compile multiple disciplines--human physiology, climatology, and medicine--in one to provide fundamental concepts in human thermal physiology and their applications in general public, occupational, military, and athletics settings from the biometeorological perspective; Developed by experts, scientists, and physicians from exercise physiology, climatology, public health, sports medicine, and military medicine; Highlights special considerations and applications of thermal physiology to general public, occupational, military, and athletics settings.
Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study
by
Gong, Jicheng
,
Zhang, Junfeng (Jim)
,
Sinharay, Rudy
in
Aged
,
Air Pollution - adverse effects
,
Air Pollution - analysis
2018
Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults.
In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured.
Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96–3·95; p<0·1), sputum (3·15, 1·39–7·13; p<0·05), shortness of breath (1·86, 0·97–3·57; p<0·1), and wheeze (4·00, 1·52–10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5–20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles.
Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects.
British Heart Foundation.
Journal Article
Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study
by
Wei, Yaguang
,
Di, Qian
,
Koutrakis, Petros
in
Aged
,
Air Pollutants - analysis
,
Air Pollutants - economics
2019
AbstractObjectiveTo assess risks and costs of hospital admission associated with short term exposure to fine particulate matter with diameter less than 2.5 µm (PM2.5) for 214 mutually exclusive disease groups.DesignTime stratified, case crossover analyses with conditional logistic regressions adjusted for non-linear confounding effects of meteorological variables.SettingMedicare inpatient hospital claims in the United States, 2000-12 (n=95 277 169).ParticipantsAll Medicare fee-for-service beneficiaries aged 65 or older admitted to hospital.Main outcome measuresRisk of hospital admission, number of admissions, days in hospital, inpatient and post-acute care costs, and value of statistical life (that is, the economic value used to measure the cost of avoiding a death) due to the lives lost at discharge for 214 disease groups.ResultsPositive associations between short term exposure to PM2.5 and risk of hospital admission were found for several prevalent but rarely studied diseases, such as septicemia, fluid and electrolyte disorders, and acute and unspecified renal failure. Positive associations were also found between risk of hospital admission and cardiovascular and respiratory diseases, Parkinson’s disease, diabetes, phlebitis, thrombophlebitis, and thromboembolism, confirming previously published results. These associations remained consistent when restricted to days with a daily PM2.5 concentration below the WHO air quality guideline for the 24 hour average exposure to PM2.5. For the rarely studied diseases, each 1 µg/m3 increase in short term PM2.5 was associated with an annual increase of 2050 hospital admissions (95% confidence interval 1914 to 2187 admissions), 12 216 days in hospital (11 358 to 13 075), US$31m (£24m, €28m; $29m to $34m) in inpatient and post-acute care costs, and $2.5bn ($2.0bn to $2.9bn) in value of statistical life. For diseases with a previously known association, each 1 µg/m3 increase in short term exposure to PM2.5 was associated with an annual increase of 3642 hospital admissions (3434 to 3851), 20 098 days in hospital (18 950 to 21 247), $69m ($65m to $73m) in inpatient and post-acute care costs, and $4.1bn ($3.5bn to $4.7bn) in value of statistical life.ConclusionsNew causes and previously identified causes of hospital admission associated with short term exposure to PM2.5 were found. These associations remained even at a daily PM2.5 concentration below the WHO 24 hour guideline. Substantial economic costs were linked to a small increase in short term PM2.5.
Journal Article
Immune biomarkers link air pollution exposure to blood pressure in adolescents
2020
Background
Childhood exposure to air pollution contributes to cardiovascular disease in adulthood. Immune and oxidative stress disturbances might mediate the effects of air pollution on the cardiovascular system, but the underlying mechanisms are poorly understood in adolescents. Therefore, we aimed to identify immune biomarkers linking air pollution exposure and blood pressure levels in adolescents.
Methods
We randomly recruited 100 adolescents (mean age, 16 years) from Fresno, California. Using central-site data, spatial-temporal modeling, and distance weighting exposures to the participant’s home, we estimated average pollutant levels [particulate matter (PM), polyaromatic hydrocarbons (PAH), ozone (O
3
), carbon monoxide (CO) and nitrogen oxides (NO
x
)]. We collected blood samples and vital signs on health visits. Using proteomic platforms, we quantitated markers of inflammation, oxidative stress, coagulation, and endothelial function. Immune cellular characterization was performed via mass cytometry (CyTOF). We investigated associations between pollutant levels, cytokines, immune cell types, and blood pressure (BP) using partial least squares (PLS) and linear regression, while adjusting for important confounders.
Results
Using PLS, biomarkers explaining most of the variance in air pollution exposure included markers of oxidative stress (GDF-15 and myeloperoxidase), acute inflammation (C-reactive protein), hemostasis (ADAMTS, D-dimer) and immune cell types such as monocytes. Most of these biomarkers were independently associated with the air pollution levels in fully adjusted regression models. In CyTOF analyses, monocytes were enriched in participants with the highest versus the lowest PM
2.5
exposure. In both PLS and linear regression, diastolic BP was independently associated with PM
2.5
, NO, NO
2
, CO and PAH
456
pollution levels (
P
≤ 0.009). Moreover, monocyte levels were independently related to both air pollution and diastolic BP levels (
P
≤ 0.010). In in vitro cell assays, plasma of participants with high PM
2.5
exposure induced endothelial dysfunction as evaluated by eNOS and ICAM-1 expression and tube formation.
Conclusions
For the first time in adolescents, we found that ambient air pollution levels were associated with oxidative stress, acute inflammation, altered hemostasis, endothelial dysfunction, monocyte enrichment and diastolic blood pressure. Our findings provide new insights on pollution-related immunological and cardiovascular disturbances and advocate preventative measures of air pollution exposure.
Journal Article