Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
322,145
result(s) for
"Environmental Science and Engineering"
Sort by:
Engineering the environment : phytotrons and the quest for climate control in the Cold War
\"This is the first history of phytotrons: huge climate-controlled laboratories that enabled plant scientists to experiment on the environmental causes of growth and development of living organisms. Made possible by computers and other modern technologies of the early Cold War, such as air conditioning and humidity control, phytotrons promised an end to global hunger and political instability, spreading around the world to thirty countries after World War II. The United States built nearly a dozen, including the first at Caltech in 1949. By the mid-1960s, as support and funding for basic science dwindled, phytotrons declined and ultimately disappeared--until, nearly thirty years later, the British built the Ecotron to study the impact of climate change on biological communities. By recalling the forgotten history of phytotrons, David P.D. Munns reminds us of the important role they can play in helping researchers unravel the complexities of natural ecosystems in the Anthropocene\"--Provided by publisher.
Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications
2023
The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering. It adds a new perspective on the feasibility and difficulty for field practice. Analysis and discussion within different parts are generally carried out based on specific considerations in each field. MICP may bring comprehensive improvement of static and dynamic characteristics of geomaterials, thus enhancing their bearing capacity and resisting liquefication. It helps produce eco-friendly and durable building materials. MICP is a promising and cost-efficient technology in preserving water resources and subsurface fluid leakage. Piping, internal erosion and surface erosion could also be addressed by this technology. MICP has been proved suitable for stabilizing soils and shows promise in dealing with problematic soils like bentonite and expansive soils. It is also envisaged that this technology may be used to mitigate against impacts of geological hazards such as liquefaction associated with earthquakes. Moreover, global environment issues including fugitive dust, contaminated soil and climate change problems are assumed to be palliated or even removed via the positive effects of this technology. Bioaugmentation, biostimulation, and enzymatic approach are three feasible paths for MICP. Decision makers should choose a compatible, efficient and economical way among them and develop an on-site solution based on engineering conditions. To further decrease the cost and energy consumption of the MICP technology, it is reasonable to make full use of industrial by-products or wastes and non-sterilized media. The prospective direction of this technology is to make construction more intelligent without human intervention, such as autogenous healing. To reach this destination, MICP could be coupled with other techniques like encapsulation and ductile fibers. MICP is undoubtfully a mainstream engineering technology for the future, while ecological balance, environmental impact and industrial applicability should still be cautiously treated in its real practice.
Journal Article
Disposal and management of solid waste : pathogens and diseases
\"In developed countries wastewater and sewage sludge are disposed by means that reduce or minimize exposure by humans to disease organisms. Most municipal solid waste goes to landfills which have liners to protect ground water. Humans are often exposed to pathogens, resulting in serious diseases from the disposal of human and animal wastes. This book describes the various pathogens and diseases that can be found in solid waste and describes the means and opportunities for disposal and management of various solid waste materials\"-- Provided by publisher.
Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review
2020
Soil stabilization technology based on microbial-induced carbonate precipitation (MICP) has gained widespread interest in geotechnical engineering. MICP has been found to be able to improve soil strength, stiffness, liquefaction resistance, erosion resistance, while maintaining a good permeability simultaneously. MICP processes involves a series of biochemical reactions that are affected by many factors, both intrinsically and externally. This paper reviews various influential factors for MICP process, including bacterial species, concentration of bacteria, temperature, pH, composition and concentration of cementation solution, grouting strategies, and soil properties. Through this comprehensive review, we find that: (1) the species and strains of bacteria, concentration of bacteria solution, temperature, pH value, and the cementation solution properties all affect the characteristics of formed calcium carbonate, such as crystal type, appearance and size, which consequently affect the cementation degree and distribution in geomaterials; (2) the condition with temperature between 20 and 40 °C, pH between 7 and 9.5, the concentration of the cementation solution within 1 mol/L, and high bacteria concentration is optimal for applying MICP in soil. Under the optimal condition, relatively low temperature, high pH value, and low concentration of cementation solution could help retain permeability and vice versa; (3) the effective grain size ranging from 10 to 1000 µm. MICP treatment works most effectively for larger size, well-graded sand; (4) the multi-phase, multi-concentration or electroosmotic grouting method can improve the MICP treatment efficiency. The grouting velocity below 0.042 mol/L/h is beneficial for improving the utilization ratio of cementation solution. The recommended grouting pressure is generally between 0.1 and 0.3 bar for MICP applications in sand and should not exceed 1.1 bar for silty and clayey soils.
Journal Article
Bites back
by
Walker, Landry Q. (Landry Quinn), author
,
Zoo, Keith, illustrator
,
Walker, Landry Q. (Landry Quinn). Project terra
in
Planets Environmental engineering Juvenile fiction.
,
Extraterrestrial beings Juvenile fiction.
,
Friendship in children Juvenile fiction.
2018
\"Elara just wants to learn how to build new worlds with her best friends Knot, Beezle, Sabik, and her alien-sponge roommate, Clare. But when an evil time-hopping force threatens to take down the galactic order, Elara's 'normal' school year might turn into something weird\"-- Provided by publisher.
Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment
by
Chakraborty, Sudip
,
Curcio, Stefano
,
Calabro, Vincenza
in
Agricultural wastes
,
Algae
,
Automotive engineering
2021
Environmental pollutions are increasing day by day due to more plastic application. The plastic material is going in our food chain as well as the environment employing microplastic and other plastic-based contaminants. From this point, bio-based plastic research is taking attention for a sustainable and greener environment with a lower footprint on the environment. This evaluation should be made considering the whole life cycle assessment of the proposed technologies to make a whole range of biomaterials. Bio-based and biodegradable bioplastics can have similar features as conventional plastics while providing extra returns because of their low carbon footprint as long as additional features in waste management, like composting. Interest in competitive biodegradable materials is growing to limit environmental pollution and waste management problems. Bioplastics are defined as plastics deriving from biological sources and formed from renewable feedstocks or by a variation of microbes, owing to the ability to reduce the environmental effect. The research and development in this field of bio-renewable resources can seriously lead to the adoption of a low-carbon economy in medical, packaging, structural and automotive engineering, just to mention a few. This review aims to give a clear insight into the research, application opportunities, sourcing and sustainability, and environmental footprint of bioplastics production and various applications. Bioplastics are manufactured from polysaccharides, mainly starch-based, proteins, and other alternative carbon sources, such as algae or even wastewater treatment byproducts. The most known bioplastic today is thermoplastic starch, mainly as a result of enzymatic bioreactions. In this work, the main applications of bioplastics are accounted. One of them being food applications, where bioplastics seem to meet the food industry concerns about many the packaging-related issues and appear to play an important part for the whole food industry sustainability, helping to maintain high-quality standards throughout the whole production and transport steps, translating into cleaner and smarter delivery chains and waste management. High perspectives resides in agricultural and medical applications, while the number of fields of applications grows constantly, for example, structural engineering and electrical applications. As an example, bio-composites, even from vegetable oil sources, have been developed as fibers with biodegradable features and are constantly under research.
Journal Article
Modernism's visible hand : architecture and regulation in America
\"Drawing on a range of previously unexplored archival resources, Michael Osman examines the increasing role of environmental technologies in building design from the late nineteenth century-- from cold storage and scientific laboratories to factories. Osman broadens our conception of how industrial capitalism shaped the built environment as well as the role of design in dealing with ecological crises today\"-- Provided by publisher.
Projected Change in Temperature and Precipitation Over Africa from CMIP6
2020
We analyze data of 27 global climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), and examine projected changes in temperature and precipitation over the African continent during the twenty-first century. The temperature and precipitation changes are computed for two future time slices, 2030–2059 (near term) and 2070–2099 (long term), relative to the present climate (1981–2010), for the entire African continent and its eight subregions. The CMIP6 multi-model ensemble projected a continuous and significant increase in the mean annual temperature over all of Africa and its eight subregions during the twenty-first century. The mean annual temperature over Africa for the near (long)-term period is projected to increase by 1.2 °C (1.4 °C), 1.5 °C (2.3 °C), and 1.8 °C (4.4 °C) under the Shared Socioeconomic Pathways (SSPs) for weak, moderate, and strong forcing, referenced as SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The future warming is not uniform over Africa and varies regionally. By the end of the twenty-first century, the largest rise in mean annual temperature (5.6 °C) is projected over the Sahara, while the smallest rise (3.5 °C) is over Central East Africa, under the strong forcing SSP5-8.5 scenario. The projected boreal winter and summer temperature patterns for the twenty-first century show spatial distributions similar to the annual patterns. Uncertainty associated with projected temperature over Africa and its eight subregions increases with time and reaches a maximum by the end of the twenty-first century. On the other hand, the precipitation projections over Africa during the twenty-first century show large spatial variability and seasonal dependency. The northern and southern parts of Africa show a reduction in precipitation, while the central parts of Africa show an increase, in future climates under the three reference scenarios. For the near (long)-term periods, the area-averaged precipitation over Africa is projected to increase by 6.2 (4.8)%, 6.8 (8.5)%, and 9.5 (15.2)% under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The median warming simulated by the CMIP6 model ensemble remains higher than the CMIP5 ensemble over most of Africa, reaching as high as 2.5 °C over some regions, while precipitation shows a mixed spatial pattern.
Journal Article
The draining of the Fens : projectors, popular politics, and state building in early modern England
\"This book is a political, social, and environmental history of the many attempts to drain the Fens of eastern England during the late sixteenth and seventeenth centuries, both the early failures and the eventual successes. Fen drainage projects were supposed to transform hundreds of thousands of acres of wetlands into dry farmland capable of growing grain and other crops, and also reform the sickly, backward fenland inhabitants into civilized, healthy farmers, to the benefit of the entire commonwealth. Fenlanders, however, viewed the drainage as a grave threat to their local landscape, economy, and way of life. At issue were two different understandings of the Fens, what they were and ought to be; the power to define the Fens in the present was the power to determine their future destiny. The drainage projects, and the many conflicts they incited, illustrate the ways in which politics, economics, and ecological thought intersected at a time when attitudes toward both the natural environment and the commonwealth were shifting. Promoted by the crown, endorsed by agricultural improvement advocates, undertaken by English and Dutch projectors, and opposed by fenland commoners, the drainage of the Fens provides a fascinating locus to study the process of state building in early modern England, and the violent popular resistance it sometimes provoked. In exploring the many challenges the English faced in re-conceiving and re-creating their Fens, this book addresses important themes of environmental, political, economic, social, and technological history, and reveals new dimensions of the evolution of early modern England into a modern, unitary, capitalist state\"-- Provided by publisher.
Karst waters in potable water supply: a global scale overview
2019
Karst aquifers are one of the main potable water sources worldwide. Although the exact global karst water utilisation figures cannot be provided, this study represents an attempt to make an upgraded assessment of earlier and often circulated data. The main objective of the undertaken analysis is not only to provide an assessment of the utilisation of current karst aquifers, but also to estimate possible trends under various impact factors such as population growth or climate changes. In > 140 countries, different types of karstified rocks crop out over some 19.3 × 106 km2, covering > 14% of ice-free land. The main ‘karst countries’, those with > 1 × 106 km2 of karst surface are Russia, USA, China and Canada, while among those with > 80% of the territories covered by karst are Jamaica, Cuba, Montenegro and several others. In contrast, in a quarter of the total number of countries, karstic rocks are either totally absent or have a minor extension, meaning that no karst water sources can be developed. Although the precise number of total karst water consumers cannot be defined, it was assessed in 2016 at approximately 678 million or 9.2% of the world’s population, which is twice less than what was previously estimated in some of the reports. With a total estimated withdrawal of 127 km3/year, karst aquifers are contributing to the total global groundwater withdrawal by about 13%. However, only around 4% of the estimated average global annually renewable karstic groundwater is currently utilised, of which < 1% is for drinking purposes. Although often problematic because of unstable discharge regimes and high vulnerability to pollution, karst groundwater represents the main source of potable water supply in many countries and regions. Nevertheless, engineering solutions are often required to ensure a sustainable water supply and prevent negative consequences of groundwater over-extraction.
Journal Article