Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
25
result(s) for
"Environmental degradation. Dictionaries"
Sort by:
Reviewing the relationship between neoliberal societies and nature: implications of the industrialized dominant social paradigm for a sustainable future
by
Lewandowsky, Stephan
,
Harvey, Jeffrey A.
,
Ellers, Jacintha
in
Anthropocentrism
,
Changes
,
Climate change
2022
How a society relates to nature is shaped by the dominant social paradigm (DSP): a society's collective view on social, economic, political, and environmental issues. The characteristics of the DSP have important consequences for natural systems and their conservation. Based on a synthesis of academic literature, we provide a new gradient of 12 types of human-nature relationships synthesized from scientific literature, and an analysis of where the DSP of industrialized, and more specifically, neoliberal societies fit on that gradient. We aim to answer how the industrialized DSP relates to nature, i.e., what types of human-nature relationships this DSP incorporates, and what the consequences of these relationships are for nature conservation and a sustainable future. The gradient of human-nature relationships is based on three defining characteristics: (1) a nature-culture divide, (2) core values, and (3) being anthropocentric or ecocentric. We argue that the industrialized DSP includes elements of the anthropocentric relationships of mastery, utilization, detachment, and stewardship. It therefore regards nature and culture as separate, is mainly driven by instrumental values, and drives detachment from and commodification of nature. Consequently, most green initiatives and policies driven by an industrialized and neoliberal DSP are based on economic incentives and economic growth, without recognition of the needs and limits of natural systems. This leads to environmental degradation and social inequality, obstructing the path to a truly sustainable society. To reach a more ecocentric DSP, systemic changes, in addition to individual changes, in the political and economic structures of the industrialized DSP are needed, along with a change in values and approach toward nature, long-term sustainability, and conservation.
Journal Article
Historical dictionary of the Chinese environment
\"Historical Dictionary of the Chinese Environment contains a chronology, an introduction, appendixes, and an extensive bibliography. The dictionary section has over 200 cross-referenced entries on environmental degradation including air and water pollution, deforestation, desertification, and resource depletion\"-- Provided by publisher.
Adaptive Iterated Shrinkage Thresholding-Based Lp-Norm Sparse Representation for Hyperspectral Imagery Target Detection
by
Zhao, Xiaobin
,
Li, Wei
,
Ma, Pengge
in
Adaptive filters
,
adaptive iterated shrinkage thresholding method (AISTM)
,
Algorithms
2020
In recent years, with the development of compressed sensing theory, sparse representation methods have been concerned by many researchers. Sparse representation can approximate the original image information with less space storage. Sparse representation has been investigated for hyperspectral imagery (HSI) detection, where approximation of testing pixel can be obtained by solving l1-norm minimization. However, l1-norm minimization does not always yield a sufficiently sparse solution when a dictionary is not large enough or atoms present a certain level of coherence. Comparatively, non-convex minimization problems, such as the lp penalties, need much weaker incoherence constraint conditions and may achieve more accurate approximation. Hence, we propose a novel detection algorithm utilizing sparse representation with lp-norm and propose adaptive iterated shrinkage thresholding method (AISTM) for lp-norm non-convex sparse coding. Target detection is implemented by representation of the all pixels employing homogeneous target dictionary (HTD), and the output is generated according to the representation residual. Experimental results for four real hyperspectral datasets show that the detection performance of the proposed method is improved by about 10% to 30% than methods mentioned in the paper, such as matched filter (MF), sparse and low-rank matrix decomposition (SLMD), adaptive cosine estimation (ACE), constrained energy minimization (CEM), one-class support vector machine (OC-SVM), the original sparse representation detector with l1-norm, and combined sparse and collaborative representation (CSCR).
Journal Article
Sound Speed Inversion Based on Multi-Source Ocean Remote Sensing Observations and Machine Learning
2024
Ocean sound speed is important for underwater acoustic applications, such as communications, navigation and localization, where the assumption of uniformly distributed sound speed profiles (SSPs) is generally used and greatly degrades the performance of underwater acoustic systems. The acquisition of SSPs is necessary for the corrections of the sound ray propagation paths. However, the inversion of SSPs is challenging due to the intricate relations of interrelated physical ocean elements and suffers from the high costs of calculations and hardware deployments. This paper proposes a novel sound speed inversion method based on multi-source ocean remote sensing observations and machine learning, which adapts to large-scale sea regions. Firstly, the datasets of SSPs are generated utilizing the Argo thermohaline profiles and the empirical formulas of the sound speed. Then, the SSPs are analyzed utilizing the empirical orthogonal functions (EOFs) to reduce the dimensions of the feature space as well as the computational load. Considering the nonlinear regression relations of SSPs and the observed datasets, a general framework for sound speed inversion is formulated, which combines the designed machine learning models with the reduced-dimensional feature representations, multi-source ocean remote sensing observations and water temperature data. After being well trained, the proposed machine learning models realize the accurate inversion of the targeted ocean region by inputting the real-time ocean environmental data. The experiments verify the advantages of the proposed method in terms of the accuracy and effectiveness compared with conventional methods.
Journal Article
An Efficient Sparse Recovery STAP Algorithm for Airborne Bistatic Radars Based on Atomic Selection under the Bayesian Framework
by
Wang, Tong
,
Liu, Kun
,
Huang, Weijun
in
Adaptive algorithms
,
airborne bistatic radar
,
Airborne radar
2024
The traditional sparse recovery (SR) space-time adaptive processing (STAP) algorithms are greatly affected by grid mismatch, leading to poor performance in airborne bistatic radar clutter suppression. In order to address this issue, this paper proposes an SR STAP algorithm for airborne bistatic radars based on atomic selection under the Bayesian framework. This method adopts the idea of atomic selection for the process of Bayesian inference, continuously evaluating the contribution of atoms to the likelihood function to add or remove atoms, and then using the selected atoms to estimate the clutter support subspace and perform sparse recovery in the clutter support subspace. Due to the inherent sparsity of clutter signals, performing sparse recovery in the clutter support subspace avoids using a massive number of atoms from an overcomplete space-time dictionary, thereby greatly improving computational efficiency. In airborne bistatic radar scenarios where significant grid mismatch exists, this method can mitigate the performance degradation caused by grid mismatch by encrypting grid points. Since the sparse recovery is performed in the clutter support subspace, encrypting grid points does not lead to excessive computational burden. Additionally, this method integrates out the noise term under a new hierarchical Bayesian model, preventing the adverse effects caused by inaccurate noise power estimation during iterations in the traditional SR STAP algorithms, further enhancing its performance. Our simulation results demonstrate the high efficiency and superior clutter suppression performance and target detection performance of this method.
Journal Article
An Efficient Sparse Bayesian Learning STAP Algorithm with Adaptive Laplace Prior
2022
Space-time adaptive processing (STAP) encounters severe performance degradation with insufficient training samples in inhomogeneous environments. Sparse Bayesian learning (SBL) algorithms have attracted extensive attention because of their robust and self-regularizing nature. In this study, a computationally efficient SBL STAP algorithm with adaptive Laplace prior is developed. Firstly, a hierarchical Bayesian model with adaptive Laplace prior for complex-value space-time snapshots (CALM-SBL) is formulated. Laplace prior enforces the sparsity more heavily than Gaussian, which achieves a better reconstruction of the clutter plus noise covariance matrix (CNCM). However, similar to other SBL-based algorithms, a large degree of freedom will bring a heavy burden to the real-time processing system. To overcome this drawback, an efficient localized reduced-dimension sparse recovery-based space-time adaptive processing (LRDSR-STAP) framework is proposed in this paper. By using a set of deeply weighted Doppler filters and exploiting prior knowledge of the clutter ridge, a novel localized reduced-dimension dictionary is constructed, and the computational load can be considerably reduced. Numerical experiments validate that the proposed method achieves better performance with significantly reduced computational complexity in limited snapshots scenarios. It can be found that the proposed LRDSR-CALM-STAP algorithm has the potential to be implemented in practical real-time processing systems.
Journal Article
Attention-Enhanced Generative Adversarial Network for Hyperspectral Imagery Spatial Super-Resolution
by
Wang, Baorui
,
Feng, Yan
,
Xie, Bobo
in
Artificial intelligence
,
Comparative analysis
,
data collection
2023
Hyperspectral imagery (HSI) with high spectral resolution contributes to better material discrimination, while the spatial resolution limited by the sensor technique prevents it from accurately distinguishing and analyzing targets. Though generative adversarial network-based HSI super-resolution methods have achieved remarkable progress, the problems of treating vital and unessential features equally in feature expression and training instability still exist. To address these issues, an attention-enhanced generative adversarial network (AEGAN) for HSI spatial super-resolution is proposed, which elaborately designs the enhanced spatial attention module (ESAM) and refined spectral attention module (RSAM) in the attention-enhanced generator. Specifically, the devised ESAM equipped with residual spatial attention blocks (RSABs) facilitates the generator that is more focused on the spatial parts of HSI that are difficult to produce and recover, and RSAM with spectral attention refines spectral interdependencies and guarantees the spectral consistency at the respective pixel positions. Additionally, an especial U-Net discriminator with spectral normalization is enclosed to pay more attention to the detailed informations of HSI and yield to stabilize the training. For producing more realistic and detailed super-resolved HSIs, an attention-enhanced generative loss is constructed to train and constrain the AEGAN model and investigate the high correlation of spatial context and spectral information in HSI. Moreover, to better simulate the complicated and authentic degradation, pseudo-real data are also generated with a high-order degradation model to train the overall network. Experiments on three benchmark HSI datasets illustrate the superior performance of the proposed AEGAN method in HSI spatial super-resolution over the compared methods.
Journal Article
A Data and Model-Driven Clutter Suppression Method for Airborne Bistatic Radar Based on Deep Unfolding
by
Wang, Tong
,
Liu, Kun
,
Huang, Weijun
in
Adaptive sampling
,
airborne bistatic radar
,
Airborne radar
2024
Space–time adaptive processing (STAP) based on sparse recovery achieves excellent clutter suppression and target detection performance, even with a limited number of available training samples. However, most of these methods face performance degradation due to grid mismatch, which impedes their application in bistatic clutter suppression. Some gridless methods, such as atomic norm minimization (ANM), can effectively address grid mismatch issues, yet they are sensitive to parameter settings and array errors. In this article, the authors propose a data and model-driven algorithm that unfolds the iterative process of atomic norm minimization into a deep network. This approach establishes a concrete and systematic link between iterative algorithms, extensively utilized in signal processing, and deep neural networks. This methodology not only addresses the challenges associated with parameter settings in traditional optimization algorithms, but also mitigates the lack of interpretability issues commonly found in deep neural networks. Moreover, due to more rational parameter settings, the proposed algorithm achieves effective clutter suppression with fewer iterations, thereby reducing computational time. Finally, extensive simulation experiments demonstrate the effectiveness of the proposed algorithm in clutter suppression for airborne bistatic radar.
Journal Article
GSDerainNet: A Deep Network Architecture Based on a Gaussian Shannon Filter for Single Image Deraining
by
Yao, Yanji
,
Shi, Zhimin
,
Li, Jing
in
Artificial intelligence
,
Artificial neural networks
,
Comparative analysis
2023
With the continuous advancement of target detection technology in remote sensing, target detection technology in images captured by drones has performed well. However, object detection in drone imagery is still a challenge under rainy conditions. Rain is a common severe weather condition, and rain streaks often degrade the image quality of sensors. The main issue of rain streaks removal from a single image is to prevent over smoothing (or underclearing) phenomena. Aiming at the above problems, this paper proposes a deep learning (DL)-based rain streaks removal framework called GSDerainNet, which properly formulates the single image rain streaks removal problem; rain streaks removal is aptly described as a Gaussian Shannon (GS) filter-based image decomposition problem. The GS filter is a novel filter proposed by us, which consists of a parameterized Gaussian function and a scaled Shannon function. Two-dimensional GS filters exhibit high stability and effectiveness in dividing an image into low- and high-frequency parts. In our framework, an input image is first decomposed into a low-frequency part and a high-frequency part by using the GS filter. Rain streaks are located in the high-frequency part. We extract and separate the rain features of the high-frequency part through a deep convolutional neural network (CNN). The experimental results obtained on synthetic data and real data show that the proposed method can better suppress the morphological artifacts caused by filtering. Compared with state-of-the-art single image rain streaks removal methods, the proposed method retains finer image object structures while removing rain streaks.
Journal Article