Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
146,180 result(s) for "Enzymes - analysis"
Sort by:
Associations of non-pedunculated T1 colorectal adenocarcinoma outcome with consensus molecular subtypes, immunoscore, and microsatellite status: a multicenter case-cohort study
Advanced colorectal cancer (CRC) consensus molecular subtype 4 (CMS4) or CRC with a low immunoscore is associated with shorter survival times. Non-metastatic CRC with microsatellite instability (MSI) is associated with a lower risk of recurrence. We evaluated outcome (lymph node metastases [LNM] or cancer recurrence) in these tumor subtypes in patients with surgically-removed non-pedunculated T1 CRC by performing a multicenter case-cohort study. We included all patients in 13 hospitals in the Netherlands from 2000–2014 (n = 651). We randomly selected a subgroup of patients (n = 223) and all patients with LNM or recurrence (n = 63), and median follow-up of 44 months. We centrally reviewed tumor-slides, and constructed and immunostained tissue microarrays determining MSI, CMS (MSI/CMS1, CMS2/3, or CMS4), and immunoscore (I-low/I-high). We used weighted Cox proportional hazard models to evaluate the association of MSI, CMS, and immunoscore with LNM or recurrence, adjusting for conventional histologic risk factors. In the randomly selected subgroup of patients, 7.1% of tumors were MSI/CMS1, 91.0% CMS2/3, 1.8% CMS4, and 25% I-low. In the case-cohort, patients with CMS4 tumors had an increased risk for LNM or recurrence compared with patients with tumors of other CMSs (adjusted hazard ratio [HR], 3.97; 95% CI, 1.12–14.06; P = 0.03). Albeit not significant, tumors with MSI had a lower risk for LNM or recurrence than other tumor subtypes (adjusted HR, 0.52; 95% CI, 0.12–2.30; P = 0.39), whereas tumors with a low immunoscore had an increased risk for LNM or recurrence (adjusted HR, 1.30; 95% CI, 0.68–2.48; P = 0.43). In conclusion, in a case-cohort study of patients with non-pedunculated T1 CRC, MSI, and immunoscore were not significantly associated with adverse outcome after surgery. CMS4 substantially increased the risk of adverse outcome. However, CMS4 is rare in T1 CRCs, limiting its value for determining the risk in patients.
Mismatch repair phenotype determines the implications of tumor grade and CDX2 expression in stage II–III colon cancer
Mismatch repair (MMR) deficiency is an indicator of good prognosis in localized colon cancer but also associated with lack of expression of caudal-type homeobox transcription factor 2 (CDX2) and high tumor grade; markers that in isolation indicate a poor prognosis. Our study aims to identify clinically relevant prognostic subgroups by combining information about tumor grade, MMR phenotype, and CDX2 expression. Immunohistochemistry for MMR proteins and CDX2 was performed in 544 patients with colon cancer stage II–III, including a cohort from a randomized trial. In patients with proficient MMR (pMMR) and CDX2 negativity, hazard ratio (HR) for cancer death was 2.93 (95% CI 1.23–6.99, p = 0.015). Cancer-specific survival for pMMR/CDX2-negative cases was 35.8 months (95% CI 23.4–48.3) versus 52.1–53.5 months (95% CI 45.6–58.6, p = 0.001) for the remaining cases (CDX2-positive tumors or deficient MMR (dMMR)/CDX2-negative tumors). In our randomized cohort, high tumor grade was predictive of response to adjuvant fluorouracil–levamisole in pMMR patients, with a significant interaction between tumor grade and treatment (p = 0.036). For pMMR patients, high tumor grade was a significant marker of poor prognosis in the surgery-only group (HR 4.60 (95% CI 1.68–12.61), p = 0.003) but not in the group receiving chemotherapy (HR 0.66 (95% CI 0.15–3.00), p = 0.587). To conclude, patients with pMMR and CDX2 negativity have a very poor prognosis. Patients with pMMR and high-graded tumors have a poor prognosis but respond well to adjuvant chemotherapy. CDX2 expression and tumor grade did not impact prognosis in patients with dMMR.
Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications
BACKGROUND: The taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica. METHODS: Thirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. RESULTS: The results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. CONCLUSIONS: This study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.
Comparison of Leishmania killicki (syn. L. tropica) and Leishmania tropica Population Structure in Maghreb by Microsatellite Typing
Leishmania (L.) killicki (syn. L. tropica), which causes cutaneous leishmaniasis in Maghreb, was recently described in this region and identified as a subpopulation of L. tropica. The present genetic analysis was conducted to explore the spatio-temporal distribution of L. killicki (syn. L. tropica) and its transmission dynamics. To better understand the evolution of this parasite, its population structure was then compared with that of L. tropica populations from Morocco. In total 198 samples including 85 L. killicki (syn. L. tropica) (from Tunisia, Algeria and Libya) and 113 L. tropica specimens (all from Morocco) were tested. Theses samples were composed of 168 Leishmania strains isolated from human skin lesions, 27 DNA samples from human skin lesion biopsies, two DNA samples from Ctenodactylus gundi bone marrow and one DNA sample from a Phlebotomus sergenti female. The sample was analyzed by using MultiLocus Enzyme Electrophoresis (MLEE) and MultiLocus Microsatellite Typing (MLMT) approaches. Analysis of the MLMT data support the hypothesis that L. killicki (syn. L. tropica) belongs to the L. tropica complex, despite its strong genetic differentiation, and that it emerged from this taxon by a founder effect. Moreover, it revealed a strong structuring in L. killicki (syn. L. tropica) between Tunisia and Algeria and within the different Tunisian regions, suggesting low dispersion of L. killicki (syn. L. tropica) in space and time. Comparison of the L. tropica (exclusively from Morocco) and L. killicki (syn. L. tropica) population structures revealed distinct genetic organizations, reflecting different epidemiological cycles.
Molecular Identification, and Characterization of Mycobacterium kansasii Strains Isolated from Four Tuberculosis Regional Reference Laboratories in Iran During 2016–2018
Non-tuberculous mycobacterial (NTM) infections are growing concern in many countries around the globe including Iran. Among them, ( causes both pulmonary and extra-pulmonary infections. Despite the high prevalence of isolates in Iran, unfortunately little is known about the epidemiological aspects of infection. Hence, the aim of the present study was to investigate the molecular identification, determination of subtypes variation and geographic distribution of clinical isolates of isolates. In the present study, 108 clinical pulmonary isolates suspected to NTM were collected from four Tuberculosis Regional Reference Laboratories in Iran during 2016-2018. The isolates were confirmed as NTM using conventional and molecular methods. Among them, isolates were subjected to gene sequencing. For determination of subtyping of isolates, polymerase chain reaction-restriction enzyme analysis (PCR-REA) based on the gene was performed. Based on the gene sequence analysis, 33 (30.5%) isolates were identified as species, compared to 31 (28.7%) isolates using phenotypic methods. The subtype I was the most frequent subtype (n=24; 72.7%), followed by subtype II (n=8; 24.2%). We indicated that the rate of isolation with clinical significance appears to be increasing in Iran, especially in highly industrialized cities. The high rate of subtype I may suggest that this genotype has a particular potency for colonization, and a higher epidemiological potential for causing infection in humans. More studies are needed to provide a better understanding of the biology and pathogenicity of subtype I.
Acoustic biosensors for ultrasound imaging of enzyme activity
Visualizing biomolecular and cellular processes inside intact living organisms is a major goal of chemical biology. However, existing molecular biosensors, based primarily on fluorescent emission, have limited utility in this context due to the scattering of light by tissue. In contrast, ultrasound can easily image deep tissue with high spatiotemporal resolution, but lacks the biosensors needed to connect its contrast to the activity of specific biomolecules such as enzymes. To overcome this limitation, we introduce the first genetically encodable acoustic biosensors—molecules that ‘light up’ in ultrasound imaging in response to protease activity. These biosensors are based on a unique class of air-filled protein nanostructures called gas vesicles, which we engineered to produce nonlinear ultrasound signals in response to the activity of three different protease enzymes. We demonstrate the ability of these biosensors to be imaged in vitro, inside engineered probiotic bacteria, and in vivo in the mouse gastrointestinal tract. Engineering cleavage sites into gas vesicle proteins enables protease-responsive regulation of gas vesicle mechanics and activates them as ultrasound contrast agents for imaging applications in cells and living mice.
Retained mismatch repair protein expression occurs in approximately 6% of microsatellite instability-high cancers and is associated with missense mutations in mismatch repair genes
Immunohistochemistry for mismatch repair protein expression is widely used as a surrogate for microsatellite instability status—an important signature for immunotherapy and germline testing. There are no systematic analyses examining the sensitivity of immunohistochemistry for microsatellite instability-high status. Mismatch repair immunohistochemistry and microsatellite instability testing were performed routinely as clinically validated assays. We classified germline/somatic mutation types as truncating (nonsense, frameshift, and in/del) versus missense and predicted pathogenicity of the latter. Discordant cases were compared with concordant groups: microsatellite instability-high/mismatch repair-deficient for mutation comparison and microsatellite stable/mismatch repair-proficient for immunohistochemical comparison. 32 of 443 (7%) microsatellite instability-high cases had immunohistochemistry. Four additional microsatellite instability-high research cases had discordant immunohistochemistry. Of 36 microsatellite instability-high cases with discordant immunohistochemistry, 30 were mismatch repair-proficient, while six (five MLH1 and one MSH2) retained expression of the defective mismatch repair protein and lost its partner. In microsatellite instability-high tumors with discordant immunohistochemistry, we observed an enrichment in deleterious missense mutations over truncating mutations, with 69% (25/36) of cases having pathogenic germline or somatic missense mutations, as opposed to only 19% (7/36) in a matched microsatellite instability-high group with concordant immunohistochemistry ( p  = 0.0007).  In microsatellite instability-high cases with discordant immunohistochemistry and MLH1 or PMS2 abnormalities, less cells showed expression ( p  = 0.015 and p  = 0.00095, respectively) compared with microsatellite stable/mismatch repair-proficient cases. Tumor mutation burden, MSIsensor score, and truncating mismatch repair gene mutations were similar between microsatellite instability-high cases with concordant versus discordant immunohistochemical expression. Approximately 6% of microsatellite instability-high cases have retained mismatch repair protein expression and would be missed by immunohistochemistry-based testing, hindering patient access to immunotherapy. Another 1% of microsatellite instability-high cases show isolated loss of the defective gene’s dimerization partner, which may lead to germline testing of the wrong gene. These cases are enriched for pathogenic mismatch repair missense mutations.
Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity
Background Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. Results The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41 , Candidatus-udaeobacter , Stropharia , Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. Conclusion Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.
Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment
Anthropogenic changes in biodiversity and atmospheric temperature significantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and warming (ambient, +1.5°C, and +3°C) on soil microbial biomass, respiration, growth after nutrient additions, and activities of extracellular enzymes in 2011 and 2012 in the BAC (biodiversity and climate) perennial grassland experiment site at Cedar Creek, Minnesota, USA. Focal enzymes are involved in essential biogeochemical processes of the carbon, nitrogen, and phosphorus cycles. Soil microbial biomass and some enzyme activities involved in the C and N cycle increased significantly with increasing plant diversity in both years. In addition, 16-species mixtures buffered warming induced reductions in topsoil water content. We found no interactive effects of plant diversity and warming on soil microbial biomass and growth rates. However, the activity of several enzymes (1,4-β-glucosidase, 1,4-β-N-acetylglucosaminidase, phosphatase, peroxidase) depended on interactions between plant diversity and warming with elevated activities of enzymes involved in the C, N, and P cycles at both high plant diversity and high warming levels. Increasing plant diversity consistently decreased microbial biomass-specific enzyme activities and altered soil microbial growth responses to nutrient additions, indicating that plant diversity changed nutrient limitations and/or microbial community composition. In contrast to our expectations, higher plant diversity only buffered temperature effects on soil water content, but not on microbial functions. Temperature effects on some soil enzymes were greatest at high plant diversity. In total, our results suggest that the fundamental temperature ranges of soil microbial communities may be sufficiently broad to buffer their functioning against changes in temperature and that plant diversity may be a dominant control of soil microbial processes in a changing world.
Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma
ObjectiveSessile serrated adenomas (SSAs) are the precursors of at least 15% of colorectal carcinomas, but their biology is incompletely understood. We performed a clinicopathological and molecular analysis of a large number of the rarely observed SSAs with dysplasia/carcinoma to better define their features and the pathways by which they progress to carcinoma.DesignA cross-sectional analysis of 137 SSAs containing regions of dysplasia/carcinoma prospectively collected at a community GI pathology practice was conducted. Samples were examined for BRAF and KRAS mutations, the CpG island methylator phenotype (CIMP) and immunostained for MLH1, p53, p16, β-catenin and 0-6-methylguanine DNA methyltransferase (MGMT).ResultsThe median polyp size was 9 mm and 86.5% were proximal. Most were BRAF mutated (92.7%) and 94.0% showed CIMP. Mismatch repair deficiency, evidenced by loss of MLH1 (74.5%) is associated with older age (76.7 versus 71.0; p<0.0029), female gender (70% versus 36%; p<0.0008), proximal location (91% versus 72%; p<0.02), CIMP (98% versus 80%; p<0.02) and lack of aberrant p53 (7% versus 34%; p<0.001) when compared with the mismatch repair-proficient cases. Loss of p16 (43.1%) and gain of nuclear β-catenin (55.5%) were common in areas of dysplasia/cancer, irrespective of mismatch repair status.ConclusionsSSAs containing dysplasia/carcinoma are predominantly small (<10 mm) and proximal. The mismatch repair status separates these lesions into distinct clinicopathological subgroups, although WNT activation and p16 silencing are common to both. Cases with dysplasia occur at a similar age to cases with carcinoma. This, together with the rarity of these ‘caught in the act’ lesions, suggests a rapid transition to malignancy following a long dwell time as an SSA without dysplasia.