Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
378 result(s) for "EpCAM"
Sort by:
Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Novel triple-positive markers identified in human non-small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics
Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non-small cell lung cancer (NSCLC). Initially, we sorted two subpopulations known as the triple-positive (EpCAM+/CD166+/CD44+) and triple-negative (EpCAM−/CD166−/CD44−) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple-positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5-fluouracil and cisplatin with 80% expression of ALDH was observed in the triple-positive subpopulation, compared to only 67% detected in the triple-negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple-positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple-negative subpopulation on day 2. This was similarly observed on day 3 in the triple-positive subpopulation with 36% higher cellular migration compared to the triple-negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple-positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple-positive subpopulation demonstrated similar characteristics to CSCs compared to the triple-negative subpopulation. It also confirmed the feasibility of using the triple-positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
A Polyamidoamine Dendrimer-Based Electrochemical Immunosensor for Label-Free Determination of Epithelial Cell Adhesion Molecule- Expressing Cancer Cells
A new electrochemical immunosensor for cancer cell detection based on a specific interaction between the metastasis-related antigen of epithelial cell adhesion molecule (EpCAM) on the cell membrane and its monoclonal antibody (Anti-EpCAM) immobilized on a gold electrode has been developed. The amino-terminated polyamidoamine dendrimer (G6 PAMAM) was first covalently attached to the 3-mercaptopropionic acid (MPA)-functionalized gold electrode to obtain a thin film, and then completely carboxylated by succinic anhydride (SA). Next, the Anti-EpCAM was covalently bound with the G6 PAMAM to obtain a stable recognition layer. In the presence of the EpCAM expressing hepatocellular carcinomas cell line of HepG2, the specific immune recognition (Anti-EpCAM/EpCAM) led to an obvious change of the electron transfer ability. The properties of the layer-by-layer assembly process was examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The final determination of HepG2 cells was performed in the presence of the reversible [Fe(CN)6]3−/4− redox couple using impedance technique. Based on the advantages of PAMAM nanomaterial and immune reaction, a linear response to HepG2 cells ranging from 1 × 104 to 1 × 106 cells mL−1 with a calculated detection limit of 2.1 × 103 cells mL−1 was obtained. We expect this method can provide a potential tool for cancer cell monitoring and protein expression analysis.
EpCAM tumor specificity and proteoform patterns in urothelial cancer
Background The role of the epithelial cell adhesion molecule (EpCAM) in cancer is still unclear. EpCAM cleavage through regulated intramembrane proteolysis results in fragments which interact with both oncogenic and tumor suppressive pathways. Additionally, the EpCAM molecule itself is used as a descriptive therapeutic target in urothelial cancer (UC), while data on its actual tumor specificity remain limited. Methods Samples from diagnostic formalin-fixed paraffin-embedded (FFPE) UC tissue and fresh-frozen UC cells were immunoblotted and used for qualitative characterization of five different EpCAM fragments. These expression patterns were quantified across a cohort of 76 samples with 52 UC and 24 normal urothelial samples. Cell viability effects of the extracellular EpEX fragment were assessed in the UC cell lines T24 and HT1376. Results The proteolytic EpCAM fragments could be identified in clinical FFPE tissue specimens too. Neither overall nor fragment-specific EpCAM expression showed relevant tumor specificity. EpEX and its deglycosylated variant showed an inverse relationship across healthy and tumor tissue with a decrease of deglycosylated EpEX in tumors. However, extracellular EpEX did not show a relevant effect in vitro. Conclusions EpCAM should not be regarded as tumor-specific in UC without patient-specific predictive testing. EpCAM fragment patterns indicate cancer-specific changes and could be involved in its complex tumor-biological role.
Frequency of Circulating Tumor Cells (CTC) in Patients with Brain Metastases: Implications as a Risk Assessment Marker in Oligo-Metastatic Disease
Forty percent of non-small cell lung cancer (NSCLC) patients develop brain metastases, resulting in a dismal prognosis. However, patients in an oligo-metastatic brain disease setting seem to have better outcomes. Here, we investigate the possibility of using circulating tumor cells (CTCs) as biomarkers to differentiate oligo-metastatic patients for better risk assessment. Using the CellSearch® system, few CTCs were detected among NSCLC patients with brain metastases (n = 52, 12.5% ≥ two and 8.9% ≥ five CTC/7.5 mL blood) and especially oligo-metastatic brain patients (n = 34, 5.9%, and 2.9%). Still, thresholds of both ≥ two and ≥ five CTCs were independent prognostic indicators for shorter overall survival time among all of the NSCLC patients (n = 90, two CTC ≥ HR: 1.629, p = 0.024, 95% CI: 1.137–6.465 and five CTC ≥ HR: 2.846, p = 0.0304, CI: 1.104–7.339), as well as among patients with brain metastases (two CTC ≥ HR: 4.694, p = 0.004, CI: 1.650–13.354, and five CTC ≥ HR: 4.963, p = 0.003, CI: 1.752–14.061). Also, oligo-brain NSCLC metastatic patients with CTCs had a very poor prognosis (p = 0.019). Similarly, in other tumor entities, only 9.6% of patients with brain metastases (n = 52) had detectable CTCs. Our data indicate that although patients with brain metastases more seldom harbor CTCs, they are still predictive for overall survival, and CTCs might be a useful biomarker to identify oligo-metastatic NSCLC patients who might benefit from a more intense therapy.
Proteomic Analysis Reveals Changes in Tight Junctions in the Small Intestinal Epithelium of Mice Fed a High-Fat Diet
The impact of a high-fat diet (HFD) on intestinal permeability has been well established. When bacteria and their metabolites from the intestinal tract flow into the portal vein, inflammation in the liver is triggered. However, the exact mechanism behind the development of a leaky gut caused by an HFD is unclear. In this study, we investigated the mechanism underlying the leaky gut related to an HFD. C57BL/6J mice were fed an HFD or control diet for 24 weeks, and their small intestine epithelial cells (IECs) were analyzed using deep quantitative proteomics. A significant increase in fat accumulation in the liver and a trend toward increased intestinal permeability were observed in the HFD group compared to the control group. Proteomics analysis of the upper small intestine epithelial cells identified 3684 proteins, of which 1032 were differentially expressed proteins (DEPs). Functional analysis of DEPs showed significant enrichment of proteins related to endocytosis, protein transport, and tight junctions (TJ). Expression of Cldn7 was inversely correlated with intestinal barrier function and strongly correlated with that of Epcam. This study will make important foundational contributions by providing a comprehensive depiction of protein expression in IECs affected by HFD, including an indication that the Epcam/Cldn7 complex plays a role in leaky gut.
Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Doxorubicin‐induced senescence promotes stemness and tumorigenicity in EpCAM−/CD133− nonstem cell population in hepatocellular carcinoma cell line, HuH‐7
The therapeutic induction of senescence is a potential means to treat cancer, primarily acting through the induction of a persistent growth‐arrested state in tumors. However, recent studies have indicated that therapy‐induced senescence (TIS) in tumor cells allows for the prolonged survival of a subgroup of cells in a dormant state, with the potential to re‐enter the cell cycle along with an increased stemness gene expression. Residual cells after TIS with increased cancer stem cell phenotype may have profound implications for tumor aggressiveness and disease recurrence. Herein, we investigated senescence‐associated stemness in EpCAM+/CD133+ liver cancer stem cell and EpCAM−/CD133− nonstem cell populations in HuH7 cell line. We demonstrated that treatment with doxorubicin induces senescence in both cell populations, accompanied by a significant increase in the expression of reprogramming genes SOX2, KLF4, and c‐MYC as well as liver stemness‐related genes EpCAM, CK19, and ANXA3 and the multidrug resistance‐related gene ABCG2. Moreover, doxorubicin treatment significantly increased EpCAM + population in nonstem cells indicating senescence‐associated reprogramming of nonstem cell population. Also, Wnt/β‐catenin target genes were increased in these cells, while inhibition of this signaling pathway decreased stem cell gene expression. Importantly, Dox‐treated EpCAM−/CD133− nonstem cells had increased in vivo tumor‐forming ability. In addition, when SASP‐CM from Dox‐treated cells were applied onto hİPSC‐derived hepatocytes, senescence was induced in hepatocytes along with an increased expression of TGF‐β, KLF4, and AXIN2. Importantly, SASP‐CM was not able to induce senescence in Hep3B‐TR cells, a derivative line rendered resistant to TGF‐β signaling. Furthermore, ELISA experiments revealed that the SASP‐CM of Dox‐treated cells contain inflammatory cytokines IL8 and IP10. In summary, our findings further emphasize the importance of carefully dissecting the beneficial and detrimental aspects of prosenescence therapy in HCC and support the potential use of senolytic drugs in HCC treatment in order to eliminate adverse effects of TIS. In this study, we showed that therapy‐induced senescence promotes tumorigenicity and stemness in liver cancer cells. Doxorubicin treatment induced senescence in both EpCAM+/CD133+ liver cancer stem cells and EpCAM−/CD133− nonstem cells. Doxorubicin‐treated EpCAM−/CD133− cells had higher expression of stemness‐related genes and displayed higher tumor‐initiating capacity than their non‐senescent counterparts. Notably, conditioned media from senescent doxorubicin‐treated EpCAM−/CD133− nonstem cells induced senescence and stemness in healthy hepatocytes.
Trop2 Forms a Stable Dimer with Significant Structural Differences within the Membrane-Distal Region as Compared to EpCAM
Trop2 is a cell-surface transmembrane glycoprotein involved in the maintenance of epithelial tissue integrity and is an important carcinoma marker. It shares similar claudin-interaction capacity with its paralogue EpCAM, and both are implicated in signaling triggered by proteolytic cleavage within the ectodomain. However, the cell proliferation-regulating interactions with IGF-1, neuregulin-1, and α5β1 integrin appear to be Trop2-specific. To illuminate the structural differences between Trop2 and EpCAM, we report the first crystal structure of a Trop2 ectodomain dimer and compare it to the analogous part of EpCAM. While the overall fold of the two proteins is similar, the dimers differ. In Trop2, the inter-subunit contacts are more extensive than in EpCAM, and there are two major differences in the membrane-distal regions. The immunogenic N-terminal domain is in Trop2 almost colinear with the dimer interface plain and consequently more laterally exposed, and the cleft of yet unknown functionality between the two subunits is almost absent. Furthermore, the site of initial signaling-associated proteolytic cleavage in Trop2 is accessible in the dimeric state, while in EpCAM dimer destabilization is required. The structural differences highlight the divergent evolutionary path of the two proteins and pave the way for their structure-based utilization in therapy.
Visualization of epithelial cell adhesion molecule-expressing renal cell carcinoma xenografts using designed ankyrin repeat protein Ec1 labelled with .sup.99mTc and .sup.125I
The upregulation of epithelial cell adhesion molecule (EpCAM) expression, found in a substantial fraction of renal cell carcinomas (RCCs), renders it a potential molecular target for the treatment of disseminated RCC. However, the heterogeneous expression of EpCAM necessitates first identifying the patients with sufficiently high expression of EpCAM in tumors. Using the specific radionuclide-based visualization of EpCAM might enable such identification. The designed ankyrin repeat protein, Ec1, is a small (molecular weight, 18 kDa) targeting protein with a subnanomolar affinity to EpCAM. Using a modified Ec1, a tracer was developed for the radionuclide-based visualization of EpCAM in vivo, i.e., an EpCAM-visualizing designed ankyrin repeat protein (EVD). EVD was labelled with either technetium-99m using technetium tricarbonyl or with iodine-125 (as a surrogate for iodine-123) by coupling it to para-[[.sup.125]I]iodobenzoyl ([.sup.125]IPIB) groups. Both the [.sup.125]I-labelled EVD ([.sup.125]I-EVD) and [.sup.99m]Tc-labelled EVD ([.sup.99m]Tc-EVD) bound specifically to EpCAM-expressing SK-RC-52 renal carcinoma cells. The binding affinity ([K.sub.D] value) of [.sup.99m]Tc-EVD to SK-RC-52 cells was 400[+ or -]28 pM. The tracers' uptake in SK-RC-52 xenografts at 3 h after injection was 5.2[+ or -]1.4%ID/g for [.sup.99m]-EVD and 6.0[+ or -]1.4%ID/g for [.sup.99m]Tc-EVD (no significant difference). These uptake values in SK-RC-52 xenografts were significantly higher (P<0.001) than those in Ramos lymphoma xenografts (used as EpCAM-negative control). The tumor-to-blood uptake ratio was significantly higher for [.sup.99m]Tc-EVD (25[+ or -]6) compared with that of [.sup.125]I-EVD (14[+ or -]3). However, [.sup.125]I-EVD was associated with higher tumor-to-liver, tumor-to-salivary gland, tumor-to-spleen and tumor-to-intestinal wall ratios. This makes it the preferable tracer for visualizing EpCAM expression levels in the frequently occurring abdominal metastases of RCC. Key words: RCC, EpCAM, radionuclide molecular imaging, SPECT, [.sup.125]I,[.sup.99m]Tc, DARPin Ecl, ESP