Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,120
result(s) for
"Epicuticular wax"
Sort by:
Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance
2018
Floods impede gas (O2 and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown.
We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated.
Leaf Gas Film 1 (LGF1) was identified as the gene determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function was verified by a complementation test of LGF1 expressed in the drp7 mutant background, which restored C30 primary alcohol synthesis, wax platelet abundance, leaf hydrophobicity, gas film retention, and underwater photosynthesis.
The discovery of LGF1 provides an opportunity to better understand variation amongst rice genotypes for gas film retention ability and to target various alleles in breeding for improved submergence tolerance for yield stability in flood-prone areas.
Journal Article
The dominant white color trait of the melon fruit rind is associated with epicuticular wax accumulation
2024
Main ConclusionMicroscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters.Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit’s color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as “wax bloom”. Previous reports have suggested that some melon (Cucumis melo L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named Wi. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC–MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, n-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.
Journal Article
Particulate matter on foliage of Betula pendula, Quercus robur, and Tilia cordata: deposition and ecophysiology
by
Popek, Robert
,
Karolewski, Piotr
,
Łukowski, Adrian
in
Air pollution
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2020
Trees in urban and industrial areas significantly help to limit the amount of particulate matter (PM) suspended in the air, but PM has a negative impact on their life. The amount of PM gathered on leaves depends on quantity, size, and morphology of leaves and can also be increased by the presence of epicuticular waxes, in which PM can become stuck or immersed. In this study, we determined the ability of PM to accumulate on leaves in relation to the species of tree and PM source. We tested saplings of three common European tree species (
Betula pendula
,
Quercus robur
, and
Tilia cordata
) by experimentally polluting them with PM from different sources (cement, construction, and roadside PM), and then assessing the effects of PM on plant growth and ecophysiology. In all studied species, we have found two types of PM accumulation: a layer on the leaf surface and an in-wax layer. Results showed that the studied species accumulate PM on their leaf blade, reducing the efficiency of its photosynthetic apparatus, which in a broader sense can be considered a reduction in the plants’ normal functioning. Saplings of
Q. robur
suffered the least, whereas
B. pendula
(especially photosynthetic rate and conductivity) and
T. cordata
(especially increase in leader shoot length) exhibited greater negative effects. The foliage of
B. pendula
collected the most PM, followed by
Q. robur
, and then
T. cordata
, regardless of the dust’s source. All tested species showed a tendency for higher wax production when growing under PM pollution stress. We believe that, potentially,
B. pendula
best enhances the quality of the PM-contaminated environment; however, faster leaf fall, reduced productivity, and worse quality of wood should be considered in urban forest management.
Journal Article
Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions
by
Qin, Jianheng
,
Kong, Xiangrui
,
Du, Zhenghua
in
Aliphatic compounds
,
Camellia sinensis
,
Correlation analysis
2021
The cuticle plays a major role in restricting nonstomatal water transpiration in plants. There is therefore a long-standing interest to understand the structure and function of the plant cuticle. Although many efforts have been devoted, it remains controversial to what degree the various cuticular parameters contribute to the water transpiration barrier. In this study, eight tea germplasms were grown under normal conditions; cuticle thickness, wax coverage, and compositions were analyzed from the epicuticular waxes and the intracuticular waxes of both leaf surfaces. The cuticular transpiration rates were measured from the individual leaf surface as well as the intracuticular wax layer. Epicuticular wax resistances were also calculated from both leaf surfaces. The correlation analysis between the cuticular transpiration rates (or resistances) and various cuticle parameters was conducted. We found that the abaxial cuticular transpiration rates accounted for 64–78% of total cuticular transpiration and were the dominant factor in the variations for the total cuticular transpiration. On the adaxial surface, the major cuticular transpiration barrier was located on the intracuticular waxes; however, on the abaxial surface, the major cuticular transpiration barrier was located on the epicuticular waxes. Cuticle thickness was not a factor affecting cuticular transpiration. However, the abaxial epicuticular wax coverage was found to be significantly and positively correlated with the abaxial epicuticular resistance. Correlation analysis suggested that the very-long-chain aliphatic compounds and glycol esters play major roles in the cuticular transpiration barrier in tea trees grown under normal conditions. Our results provided novel insights about the complex structure–functional relationships in the tea cuticle.
Journal Article
Immobilized atmospheric particulate matter on leaves of 96 urban plant species
by
Muhammad, Samira
,
Samson, Roeland
,
Wuyts, Karen
in
Abies fraseri
,
Aerodynamics
,
Air Pollutants - analysis
2020
Plants provide many ecosystem services in urban environments, including improving ambient air quality. Leaves of plants permit the deposition of particulate matter (PM) and, depending on their leaf traits, PM may be immobilized within the epicuticular wax (EW) layer, on trichomes, on hyphae of fungi, or inside stomatal cavities. In this study, leaves of 96 perennial urban plant species consisting of 45 deciduous broadleaf/needle-like trees, 32 deciduous broadleaf shrubs, 12 evergreen needle/scale-like trees, 5 evergreen broadleaf trees, and 2 climber species were investigated in June and September 2016 to determine the effectiveness of distinct leaf surfaces in PM immobilization after leaf washing treatment. The leaf surfaces were washed vigorously using a vortex shaker. The magnetizable component of accumulated and immobilized PM on the leaf surfaces was estimated using saturation isothermal remanent magnetization (SIRM) of the unwashed and washed leaves, respectively. In June, the washed leaf SIRM of deciduous (broadleaf/needle-like) tree and shrub species (
n
= 77) ranged between 0.1 and 13.9 μA. In September, the washed leaf SIRM of all investigated plant species (
n
= 96) ranged between 1.2 and 35.0 μA. Outcomes of this study indicate that leaves of
Buddleja davidii
,
Viburnum lantana
, and
Sorbus intermedia
showed the highest washed leaf SIRM and thus were the most effective in immobilizing PM on their leaf surfaces while leaves of
Populus alba
,
Robinia pseudoacacia
, and
Abies fraseri
with lowest washed leaf SIRM were the least effective. On average, more than half (i.e., 60%) of the magnetic signal still remained after vigorous washing but a large variation exists between species (9–96%). The leaf SIRM of washed leaves of deciduous broadleaf tree and shrub species was significantly higher compared to leaves of evergreen needle/scale-like species. Evidently, the magnetic signal of unwashed leaves was higher than washed ones and higher in September than in June. Leaf traits significantly influenced the magnetic signal of both washed and unwashed leaves: leaves with a high trichome density or high leaf wettability showed a higher unwashed and washed leaf SIRM compared to leaves with no trichomes or low leaf wettability. The effect of epicuticular wax structure types on leaf SIRM was indicated to be only marginally significant. Moreover, also the immobilized fraction of PM was significantly affected by trichome density and leaf wettability, thus substantiating that plant species with high trichome density and/or leaf wettability not only accumulate more PM but are also less prone to PM re-suspension than other species. In general, the results also indicate that leaf SIRM of unwashed leaves can be a good indicator to determine the effectiveness of a plant species in PM immobilization. Plant species effective in immobilizing PM on their leaf surfaces may likely improve ambient air quality when planted in urban environments. However, it is vital that leaves of these plant species (i.e., with high PM immobilization abilities) are carefully recycled as they may be polluted.
Journal Article
Plasticity of the Cuticular Transpiration Barrier in Response to Water Shortage and Resupply in Camellia sinensis: A Role of Cuticular Waxes
by
Han, Yanting
,
Kong, Xiangrui
,
Du, Zhenghua
in
Camellia sinensis
,
Cell walls
,
Cellulose acetate
2021
The cuticle is regarded as a non-living tissue; it remains unknown whether the cuticle could be reversibly modified and what are the potential mechanisms. In this study, three tea germplasms (
Wuniuzao
,
0202-10
, and
0306A
) were subjected to water deprivation followed by rehydration. The epicuticular waxes and intracuticular waxes from both leaf surfaces were quantified from the mature 5th leaf. Cuticular transpiration rates were then measured from leaf drying curves, and the correlations between cuticular transpiration rates and cuticular wax coverage were analyzed. We found that the cuticular transpiration barriers were reinforced by drought and reversed by rehydration treatment; the initial weak cuticular transpiration barriers were preferentially reinforced by drought stress, while the original major cuticular transpiration barriers were either strengthened or unaltered. Correlation analysis suggests that cuticle modifications could be realized by selective deposition of specific wax compounds into individual cuticular compartments through multiple mechanisms, including
in vivo
wax synthesis or transport, dynamic phase separation between epicuticular waxes and the intracuticular waxes,
in vitro
polymerization, and retro transportation into epidermal cell wall or protoplast for further transformation. Our data suggest that modifications of a limited set of specific wax components from individual cuticular compartments are sufficient to alter cuticular transpiration barrier properties.
Journal Article
Drought induced metabolic shifts and water loss mechanisms in canola: role of cysteine, phenylalanine and aspartic acid
by
Soolanayakanahally, Raju
,
Pahari, Shankar
,
Ballantyne, Krista
in
Abscisic acid
,
Amino acids
,
Aspartic acid
2024
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant’s metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier. This study investigates the impact of soil water deficit on stomatal and epicuticular water losses, as well as metabolic adjustments in two canola ( Brassica napus L.) cultivars—one drought-tolerant and the other drought-sensitive. Specifically, we examined the effect of a drought treatment, which involved reducing water holding capacity to 40%, on the levels of cysteine, sucrose, and abscisic acid (ABA) in the leaves of both cultivars. Next, we looked for potential differences in night, predawn, and early morning transpiration rates and the epicuticular wax load and composition in response to drought. A substantial rise in leaf cysteine was observed in both canola cultivars in response to drought, and a strong correlation was found between cysteine, ABA, and stomatal conductance, indicating that cysteine and sulfur may play a role in controlling stomatal movement during drought stress. Attributes related to CO 2 diffusion (stomatal and mesophyll conductance) and photosynthetic capacity were different between the two canola cultivars suggesting a better management of water relations under stress by the drought-tolerant cultivar. Epicuticular waxes were found to adjust in response to drought, acting as an additional barrier against water loss. Surprisingly, both canola cultivars responded similarly to the metabolites (cysteine, sucrose, and ABA) and epicuticular waxes, indicating that they were not reliable stress markers in our test setup. However, the higher level of phenylalanine in the drought-tolerant canola cultivar is suggestive that this amino acid is important for adaptation to drier climates. Furthermore, a multitrait genotype-ideotype distance index (MGIDI) revealed the likely role of aspartic acid in sustaining nitrogen and carbon for immediate photosynthetic resumption after drought episodes. In conclusion, leveraging amino acid knowledge in agriculture can enhance crop yield and bolster resistance to environmental challenges.
Journal Article
Vicariance Between Cercis siliquastrum L. and Ceratonia siliqua L. Unveiled by the Physical–Chemical Properties of the Leaves’ Epicuticular Waxes
2022
Classically, vicariant phenomena have been essentially identified on the basis of biogeographical and ecological data. Here, we report unequivocal evidences that demonstrate that a physical–chemical characterization of the epicuticular waxes of the surface of plant leaves represents a very powerful strategy to get rich insight into vicariant events. We found vicariant similarity between Cercis siliquastrum L. (family Fabaceae , subfamily Cercidoideae ) and Ceratonia siliqua L. (family Fabaceae , subfamily Caesalpinoideae ). Both taxa converge in the Mediterranean basin ( C. siliquastrum on the north and C. siliqua across the south), in similar habitats (sclerophyll communities of maquis ) and climatic profiles. These species are the current representation of their subfamilies in the Mediterranean basin, where they overlap. Because of this biogeographic and ecological similarity, the environmental pattern of both taxa was found to be very significant. The physical–chemical analysis performed on the epicuticular waxes of C. siliquastrum and C. siliqua leaves provided relevant data that confirm the functional proximity between them. A striking resemblance was found in the epicuticular waxes of the abaxial surfaces of C. siliquastrum and C. siliqua leaves in terms of the dominant chemical compounds (1-triacontanol (C30) and 1-octacosanol (C28), respectively), morphology (intricate network of randomly organized nanometer-thick and micrometer-long plates), wettability (superhydrophobic character, with water contact angle values of 167.5 ± 0.5° and 162 ± 3°, respectively), and optical properties (in both species the light reflectance/absorptance of the abaxial surface is significantly higher/lower than that of the adaxial surface, but the overall trend in reflectance is qualitatively similar). These results enable us to include for the first time C. siliqua in the vicariant process exhibited by C. canadensis L., C. griffithii L., and C. siliquastrum .
Journal Article
A Proposed Method for Simultaneous Measurement of Cuticular Transpiration From Different Leaf Surfaces in Camellia sinensis
2020
The plant cuticle is the major barrier that limits unrestricted water loss and hence plays a critical role in plant drought tolerance. Due to the presence of stomata on the leaf abaxial surface, it is technically challenging to measure abaxial cuticular transpiration. Most of the existing reports were only focused on leaf astomatous adaxial surface, and few data are available regarding abaxial cuticular transpiration. Developing a method that can measure cuticular transpiration from both leaf surfaces simultaneously will improve our understanding about leaf transpiration barrier organization. Here, we developed a new method that enabled the simultaneous measurement of cuticular transpiration rates from the adaxial and abaxial surfaces. The proposed method combined multi-step leaf pretreatments including water equilibration under dark and ABA treatment to close stomata, as well as gum arabic or vaseline application to remove or seal the epicuticular wax layer. Mathematical formulas were established and used to calculate the transpiration rates of individual leaf surfaces from observed experimental data. This method facilitates the simultaneous quantification of cuticular transpiration from adaxial and abaxial leaf surfaces. By applying this method, we demonstrated that the adaxial intracuticular waxes and the abaxial epicuticular waxes constitute the major transpiration barriers in
. Wax analysis indicated that adaxial intracuticular waxes had higher coverage of very long chain fatty acids, 1-alkanol esters, and glycols, which may be attributed to its higher transpiration barrier than that of the abaxial intracuticular waxes.
Journal Article
Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage (Brassica campestris L. ssp. pekinensis)
2023
The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants,
and
, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'.
The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation.
The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that
, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for
. A SNP 2,113,772 (C to T) variation in the 6
exon of
in
led to the 262
amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10
exon of
in
resulted in the change of the 434
amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1.
These results indicated that
was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Journal Article