Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,003
result(s) for
"Erosion mechanisms"
Sort by:
Arc Erosion Behavior of Cu/Ti3SiC2 Cathodes in c-C4F8 Gas as a Substitute for SF6 Gas
2023
In this paper, the arc erosion behavior of copper/titanium silicon carbide (Cu/Ti3SiC2) cathodes in air, sulfur hexafluoride (SF6) and octafluoroisobutane (c-C4F8) were investigated at 7.5 kV, and the possibility of c-C4F8 gas as a substitute for SF6 gas was assessed. The material was oxidized in air with large cracks, while it maintained a good structure in SF6 and c-C4F8, although there were some bulges in the erosion center. Fluorinated carbon (CFx) was detected in c-C4F8, which improved the arc erosion resistance. The arc extinguishing performance of different gases was analyzed by establishing the Mayr arc model and calculating the time constant θ and power loss coefficient N0. The results indicate that the time constant θ decreases in the order air > c-C4F8 > SF6, while the power loss coefficient N0 decreases in the order c-C4F8 > SF6 > air. An arc erosion mechanism was also proposed in this study.
Journal Article
Study on Erosion Behavior of Laser Wire Feeding Cladding High-Manganese Steel Coatings
2023
High-manganese steel (HMnS) coating was prepared using laser wire feeding cladding technology. Erosion damage behavior and erosion rate of both the HMnS coating and the HMnS substrate were investigated at room temperature using an erosion testing machine. SEM/EDS, XRD, EPMA, and microhardness analyses were used to characterize the cross sections of the coating and matrix, as well as the morphology, phase composition, and microhardness of the eroded surface. The phase composition, orientation characteristics, and grain size of the eroded surfaces of both the coating and substrate were examined by using the EBSD technique. The erosion mechanism under different erosion angles was revealed. By analyzing the plastic deformation behavior of the subsurface of the HMnS coating, the impact hardening mechanism of the high-manganese steel coating during the erosion process was investigated. The results demonstrated that the HMnS coating, prepared through laser wire feeding cladding, exhibited excellent metallurgical bonding with the substrate, featuring a dense microstructure without any cracks. The erosion rate of the coatings was lower than that of the substrate at different erosion angles, with the maximum erosion rate occurring at 35° and 50°. The damage to the coating and substrate under low-angle erosion was primarily attributed to the micro-cutting of erosion particles and a minor amount of hammering. At the 90° angle, the dominant factor was hammering. After erosion, the microhardness of both the coating and substrate sublayer increased to 380HV0.3 and 359HV0.3, respectively. Dendrite segregation, refined grains, low-angle grain boundaries, and localized dislocations, generated by laser wire feeding cladding, contributed to the deformation process of HMnS. These factors collectively enhance the hardening behavior of HMnS coatings, thereby providing excellent erosion resistance.
Journal Article
Enhanced Erosion Resistance of Cr3C2-TiC-NiCrCoMo Coatings: Experimental and Numerical Investigation of Erosion Mechanisms
2025
To enhance the erosion resistance of typical Cr3C2-NiCr coatings, the Cr3C2-TiC-NiCrCoMo (NCT) coating was developed and deposited by high-velocity oxygen fuel spray (HVOF). The erosion resistance and mechanisms of the coating were investigated using numerical simulations and experimental methods. A comprehensive calculation model for the coating erosion rate was developed, incorporating factors such as the properties of the eroded particles, the characteristics of the coating, and the conditions of erosion. The erosion rate of the NCT coating was calculated and predicted by the model, and the accuracy of these predictions was validated through experiments. The NCT1 (87.3 wt.% Cr3C2-NiCrCoMo/3 wt.% TiC)coating demonstrated exceptional erosion resistance compared to the original Cr3C2-NiCrCoMo (NCC) coatings with reduced erosion rates of 23.64%, 20.45%, and 16.22% at impact angles of 30°, 60°, and 90°, respectively. The addition of nano-TiC particles into the NCT1 coating enhances the yield strength, impeding the intrusion of erosive particles at low angles and supporting the metal binder phase, eventually reducing fatigue fracture under repeated erosion. However, excessive nano-TiC content degrades the erosion resistance due to the increase in pores and cracks within the coating.
Journal Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
2025
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations.
Journal Article
Experimental Study on Microstructure and Erosion Mechanisms of Solid Waste Cemented Paste Backfill under the Combined Action of Dry–Wet Cycles and Sulphate Erosion
2022
Solid waste cemented paste backfill (SWCPB) meets the needs of coal mining area management. SWCPB is a cementitious paste backfill material without added cement and is made only from oil shale residue (OSR), steel slag (SS), soda residue (SR) and water. In this study, mine water characteristics were simulated by combining dry–wet cycling experiments with sulphate erosion experiments. SWCPB was assessed regarding appearance, mass loss, and unconfined compressive strength (UCS), and the erosion products were microscopically analysed with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanism for erosion of the SWCPB by sulphate-rich mine water was comprehensively analysed and revealed. Research showed that the erosion mechanism was divided into two parts: chemical and physical erosion. Low concentrations of sodium sulphate promoted hydration, thereby contributing to the increased mass and strength of SWCPB. At high sodium sulphate concentrations, the erosion mainly consumed Ca(OH)2 within the material, and the main generated erosion products were gypsum and ettringite (AFt). This was accompanied by the destructive effects of Na2SO4 crystal expansion, which resulted in damage and the reduced workability of the SWCPB. The whole erosion process was continuous, mainly due to transformations of pits, pores and cracks. The conclusions of this study may provide appropriate guidance for application of SWCPB materials in the treatment of coal mine backfills. In addition, the corresponding theoretical analysis of the erosion mechanism for SWCPB materials is provided.
Journal Article
Research on the solid particle erosion wear of pipe steel for hydraulic fracturing based on experiments and numerical simulations
by
Liu, Ming-Tao
,
Li, De-Ning
,
Fan, Jian-Chun
in
Applied stress
,
Chromium molybdenum steels
,
Composite materials
2024
Erosion wear is a common failure mode in the oil and gas industry. In the hydraulic fracturing, the fracturing pipes are not only in high-pressure working environment, but also suffer from the impact of the high-speed solid particles in the fracturing fluid. Beneath such complex conditions, the vulnerable components of the pipe system are prone to perforation or even burst accidents, which has become one of the most serious risks at the fracturing site. Unfortunately, it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing. Therefore, this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations. Firstly, we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material. The effects of impact angle, flow velocity and applied stress on erosion wear were comprehensively considered. Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters, and the evolution process of particle erosion under different impact angles, impact velocities and applied stress was analyzed. By combining the erosion characteristics, the micro-structure of the eroded area, and the micro-mechanics of erosion damage, the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time. Under high-pressure operating conditions, it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased, resulting in more severe erosion wear of fracturing pipes.
Journal Article
Prediction of Erosion of a Hydrocyclone Inner Wall Based on CFD-DPM
2025
The erosion mechanism of hydrocyclones under air column conditions is still unclear. In this paper, Computational Fluid Dynamics–Discrete Phase Model (CFD-DPM) technology is adopted to perform transient simulations of the three-phase flow (liquid–gas–solid) within a hydrocyclone. The Reynolds Stress Model (RSM) and Volume of Fluid (VOF) model are adopted to simulate the continuous phase flow field within the hydrocyclone, while the DPM coupled with the Oka erosion model is used to predict the particle flow and erosion mechanisms on each wall within the hydrocyclone. The particle sizes considered are 15 μm, 30 μm, 60 μm, 100 μm, 150 μm, and 200 μm, respectively, with a density of 2600 kg/m3. The particle velocity is consistent with the fluid velocity at 5 m/s, the total mass flow rate is 6 g/s, and the volume fraction is less than 10%. The results indicate that the cone section suffers the severest erosion, followed by the overflow pipe, column section, infeed section, and roof section. The erosion in the cone section reaches its maximum value near the underflow port, with an erosion rate approximately 6.8 times that of the upper cone section. The erosion distribution in the overflow pipe is uneven. The erosion of the column section exhibits a spiral banded distribution with a relatively large pitch. The erosion rate in the infeed section is approximately 1.47 times that of the roof section.
Journal Article
Study on liquid-solid jet erosion characteristics of 316L stainless steel
by
Wang, Guan
,
Wang, Wenhui
,
Deng, Jianfei
in
Austenitic stainless steels
,
Control
,
Dynamical Systems
2023
The essence of erosion is the dynamic damage and material loss process of a material caused by particle impact. The failure mechanism of erosion is the result of the interaction of multiphase flow, particle characteristics, material properties, particle impact process, and other factors. This paper employs experimental and numerical simulation methods to investigate the erosion behavior of a solid-liquid two-phase flow of 316L stainless steel jet from the angle of erosion, to explain the erosion behavior from both macroscopic and microscopic perspectives. The results discovered that the kinetic energy of the fluid is converted into pressure potential energy, which changes the kinematic characteristics of the particles and influences how they erode. The particles erode the target material by plowing and impacting at various erosion angles, and the erosion rate exhibits an increasing-decreasing-increasing tendency as the erosion angle increases, the 45° corresponds to the maximum erosion rate. Due to the particles to harden the target surface, the erosion effect is diminished in the time dimension. Comparing to high erosion angles, the reduction rate of the erosion rate in the late experiment stage is small for slow erosion angles. In the last 3 hours of the experiment, the total erosion of 316L stainless steel at 90° erosion angle was only 35 %. This provides a theoretical foundation for failure prevention in transport components containing solid particles.
Journal Article
Research Progress in Abrasive Water Jet Processing Technology
by
Yuan, Ruifu
,
Wang, Hongqi
,
Zai, Penghui
in
Abrasive erosion
,
Abrasive machining
,
abrasive water jet
2023
Abrasive water jet machining technology is an unconventional special process technology; its jet stream has high energy, and its machining process is characterized by no thermal deformation, no pollution, high applicability, and high flexibility. It has been widely used for processing different types of materials in different fields. This review elaborates on the basic principles and characteristics of abrasive water jet processing, the mechanism of erosion, the simulation of the processing, the influence of process parameters in machining removal, and the optimization of improvements, as well as introduces the current application status, new technology, and future development direction of abrasive water jet technology. This review can provide an important information reference for researchers studying the machining processing of abrasive water jet technology.
Journal Article
Influence of a permeable sand layer on the mechanism of backward erosion piping using 3D pipe depth measurements
2021
Backward erosion piping (BEP) poses a threat to the stability of water-retaining structures. This can lead to severe erosion and collapse of embankments. A novel economically appealing measure against BEP is the coarse sand barrier (CSB). The CSB is a trench filled with coarse sand that is placed below the blanket layer on the landward side of the embankment, which prevents the pipe from developing upstream when it encounters the CSB. Inclusion of a CSB creates a vertically layered sand, which is the situation that can also exist in practice but is different from traditional BEP tests with one homogeneous sand. This paper presents new observations and measurements in medium-scale laboratory tests. 3D measurements of the pipe depth and dimensions are presented and analysed. This analysis indicates how the pipe dimensions evolve during the piping process and shows the erosion mechanism for BEP in vertically layered sands. The findings demonstrate the significance of three-dimensional study of the pipe rather than two dimensions. The pipe depth, width and depth-to-width ratios at the pipe tip in critical erosion stages are measured and presented. In the presented tests, two different erosion behaviours (stepwise pipe progression until failure and straight failure) are found and analysed with respect to possible influential parameters. Higher head drops and flow rates are found in tests with straight failure at the stage before progression. A linear relationship between the hydraulic conductivity contrast (kc) and the critical head drops (hc) is found and observations are used to investigate deviations from the line.
Journal Article