Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Eryops"
Sort by:
The appendicular skeleton of Eryops megacephalus Cope, 1877 (Temnospondyli: Eryopoidea) from the Lower Permian of North America
The appendicular skeleton of the Lower Permian temnospondyl Eryops megacephalus Cope, 1877, described and figured in detail, is similar to that of most temnospondyls, except that it is highly ossified. It displays terrestrial adaptations, including a reduced dermal pectoral girdle and comparatively large limbs, characterized by well-developed processes for muscle attachment. While many features that were previously unknown or uncommon among temnospondyls were identified, no apomorphies of the appendicular skeleton particular to Eryops were found. Some characteristics of the endochondral postcranial skeleton found in well-ossified temnospondyls, such as Eryops, are absent in less well ossified temnospondyls due to immaturity or paedomorphism. The effects of heterochronic processes on the morphology of the postcranial skeleton of temnospondyls and the implications for cladistics are discussed; the appendicular skeleton of Eryops is considered hypermorphic. Within the Temnospondyli, the Eryops appendicular skeleton is most similar to that of the Dissorophoidea, and most dissimilar to both the most plesiomorphic temnospondyls and the secondarily aquatic Mesozoic stereospondyls. The appendicular skeletons of well-ossified Late Permian and Mesozoic temnospondyls are not as robust as that of Eryops. Surprisingly, Eryops, in common with other well-ossified temnospondyls, shares many derived features of the appendicular skeleton with seymouriamorphs and diadectomorphs. The presence of these previously unrecognized synapomorphies (relative to stem tetrapods and embolomeres) provides evidence for an alternative hypothesis of relationships of early tetrapods, suggesting that the Temnospondyli and seymouriamorphs plus diadectomorphs are sister taxa.
First Report of Vertebrate Fossils in the Snyderville Shale (Oread Formation; Upper Pennsylvanian), Greenwood County, Kansas
A recent serendipitous vertebrate fossil find in the Upper Pennsylvanian of Greenwood County, Kansas has yielded hundreds of disassociated bones of amphibians as well as reptiles, fish, and sharks. This is the first published report on vertebrate fossils from the Snyderville Shale, which represents the regressive phase of a minor cyclothem in the Oread Formation. Preliminary identification suggests the presence of Archeria, Diasparactus, Eryops, Ophiacodon, Orthacanthus, Sagenodus, and Trimerorhachis. These vertebrates were land-dwelling, semi-aquatic, and aquatic and are consistent with a coastal, wetland paleoenvironment.
UPPER PENNSYLVANIAN TETRAPODS FROM THE ADA FORMATION OF SEMINOLE COUNTY, OKLAHOMA
A recently discovered tetrapod-bearing locality (OMNH V1005) in the Upper Pennsylvanian Ada Formation of Oklahoma has produced the remains of six taxa: the pelycosaurian-grade synapsid Ophiacodon cf. mirus, an indeterminate sphenacodontian pelycosaur, the temnospondyl Eryops? sp., the rare diadectid Diasparactus zenos, and two unidentified taxa known only from jaw fragments. The skeletal material comprises an allochthonous assemblage transported by low-velocity currents prior to burial. Except for four articulated Ophiacodon vertebral segments, all fossil material recovered in situ was disarticulated. The bones were not exposed to prolonged periods of weathering prior to burial. OMNH V1005 records the first occurrence of Eryops, Diasparactus, and Ophiacodon from the Pennsylvanian of Oklahoma. The presence of Diasparactus zenos indicates that this species was not endemic to New Mexico, as formerly believed. An associated dentary provides the first well-preserved cheek teeth of Diasparactus zenos. Compared to other North American diadectid genera, these teeth resemble more closely those of Diadectes than those of Desmatodon. The occurrence of Ophiacodon mirus, which was previously known from Lower Permian strata of New Mexico, extends both the stratigraphic and geographic range of this species. The Ada assemblage resembles those found in Permo-Carboniferous deltaic deposits in the southwestern United States.